/smarty

SMARTS-based atom typing exploration tool

Primary LanguagePython

Build Status

smarty: Exploring Bayesian atom type sampling

This is a simple example of how Bayesian atom type sampling using reversible-jump Markov chain Monte Carlo (RJMCMC) [1] over SMARTS types might work.

Manifest

  • examples/ - some toy examples - look here to get started
  • smarty/ - simple toolkit illustrating the use of RJMCMC to sample over SMARTS-specified atom types
  • devtools/ - continuous integration and packaging scripts and utilities
  • oe_license.txt.enc - encrypted OpenEye license for continuous integration testing
  • .travis.yml - travis-ci continuous integration file

Prerequisites

Install miniconda first. On osx with bash, this is:

wget https://repo.continuum.io/miniconda/Miniconda2-latest-MacOSX-x86_64.sh
bash Miniconda2-latest-MacOSX-x86_64.sh -b -p $HOME/miniconda
export PATH="$HOME/miniconda/bin:${PATH}""

You must first install the OpenEye toolkit:

pip install -i https://pypi.anaconda.org/OpenEye/simple OpenEye-toolkits

Install other conda dependencies:

conda install --yes numpy networkx

NOTE: We'll find a better way to install these dependencies via conda soon.

Installation

Install smarty from the smarty/ directory with:

pip install .

If you modify the smarty source code (rather than the examples), reinstall with

pip install . --upgrade

Documentation

How it works

Check out the example in examples/parm@frosst/:

Atom types are specified by SMARTS matches with corresponding parameter names.

First, we start with a number of initial "base types", specified in atomtypes/basetypes.smarts:

% atom types
[#1]    hydrogen
[#6]    carbon
[#7]    nitrogen
[#8]    oxygen
[#9]    fluorine
[#15]   phosphorous
[#16]   sulfur
[#17]   chlorine
[#35]   bromine
[#53]   iodine

Note that lines beginning with % are comment lines.

Atom type creation moves attempt to split off a new atom type from a parent atom type by combining (via an "and" operator, &) the parent atom type with a "decorator". The decorators are listed in atomtypes/decorators.smarts:

% bond order
$([*]=[*])     double-bonded
$([*]#[*])     triple-bonded
$([*]:[*])     aromatic-bonded
% bonded to atoms
$(*~[#1])      hydrogen-adjacent
$(*~[#6])      carbon-adjacent
$(*~[#7])      nitrogen-adjacent
$(*~[#8])      oxygen-adjacent
$(*~[#9])      fluorine-adjacent
$(*~[#15])     phosphorous-adjacent
$(*~[#16])     sulfur-adjacent
$(*~[#17])     chlorine-adjacent
$(*~[#35])     bromine-adjacent
$(*~[#53])     iodine-adjacent
% degree
D1             degree-1
D2             degree-2
D3             degree-3
D4             degree-4
D5             degree-5
D6             degree-6
% valence
v1             valence-1
v2             valence-2
v3             valence-3
v4             valence-4
v5             valence-5
v6             valence-6
% total-h-count
H1             total-h-count-1
H2             total-h-count-2
H3             total-h-count-3
% aromatic/aliphatic
a              atomatic
A              aliphatic

Each decorator has a corresponding string token (no spaces allowed!) that is used to create human-readable versions of the corresponding atom types.

For example, we may find the atom type [#6]&H3 which is carbon total-h-count-3 for a C atom bonded to three hydrogens.

Newly proposed atom types are added to the end of the list. MAfter a new atom type is proposed, all molecules are reparameterized using the new set of atom types. Atom type matching proceeds by trying to see if each SMARTS match can be applied working from top to bottom of the list. This means the atom type list is hierarchical, with more general types appearing at the top of the list and more specific subtypes appearing at the bottom.

If a proposed type matches zero atoms, the RJMCMC move is rejected.

Currently, the acceptance criteria does not include the full Metropolis-Hastings acceptance criteria that would include the reverse probability. This needs to be added in.

References

[1] Green PJ. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711, 1995. http://dx.doi.org/10.1093/biomet/82.4.711