CHUK Tool Processor — Production-grade execution for LLM tool calls

PyPI Python License Type Checked Wheels OpenTelemetry

Reliable tool execution for LLMs — timeouts, retries, caching, rate limits, circuit breakers, and MCP integration — in one composable layer.


The Missing Layer for Reliable Tool Execution

LLMs are good at calling tools. The hard part is executing those tools reliably.

CHUK Tool Processor:

  • Parses tool calls from any model (Anthropic XML, OpenAI tool_calls, JSON)
  • Executes them with timeouts, retries, caching, rate limits, circuit breaker, observability
  • Runs tools locally, in isolated subprocesses, or remote via MCP

CHUK Tool Processor is the execution layer between LLM responses and real tools.

It sits below agent frameworks and prompt orchestration, and above raw tool implementations.

    LLM Output
        ↓
CHUK Tool Processor
        ↓
 ┌──────────────┬────────────────────┐
 │ Local Tools  │ Remote Tools (MCP) │
 └──────────────┴────────────────────┘

How it works internally:

    LLM Output
        ↓
Parsers (XML / OpenAI / JSON)
        ↓
┌─────────────────────────────┐
│   Execution Middleware      │
│  (Applied in this order)    │
│   • Cache                   │
│   • Rate Limit              │
│   • Retry (with backoff)    │
│   • Circuit Breaker         │
└─────────────────────────────┘
        ↓
   Execution Strategy
   ┌──────────────────────┐
   │ • InProcess          │  ← Fast, trusted
   │ • Isolated/Subprocess│  ← Safe, untrusted
   │ • Remote via MCP     │  ← Distributed
   └──────────────────────┘

Works with OpenAI, Anthropic, local models (Ollama/MLX/vLLM), and any framework (LangChain, LlamaIndex, custom).

Executive TL;DR

  • Parse any format: XML (Anthropic), OpenAI tool_calls, or raw JSON
  • Execute with production policies: timeouts/retries/cache/rate-limits/circuit-breaker/idempotency
  • Run anywhere: locally (fast), isolated (subprocess sandbox), or remote via MCP (HTTP/STDIO/SSE)
import asyncio
from chuk_tool_processor import ToolProcessor, tool

@tool(name="weather")  # Clean decorator syntax
class WeatherTool:
    async def execute(self, city: str) -> dict:
        return {"temp": 72, "condition": "sunny", "city": city}

async def main():
    # No need for initialize() - auto-initializes on first use!
    async with ToolProcessor(enable_caching=True, enable_retries=True) as p:
        # Works with OpenAI, Anthropic, or JSON formats
        result = await p.process('<tool name="weather" args=\'{"city": "SF"}\'/>')
        print(result[0].result)  # {'temp': 72, 'condition': 'sunny', 'city': 'SF'}

asyncio.run(main())

If you only remember three things:

  1. Parse XML, OpenAI tool_calls, or raw JSON automatically
  2. Execute with timeouts/retries/cache/rate-limits/circuit-breaker
  3. Run tools locally, isolated (subprocess), or remote via MCP

When to Use This

Use CHUK Tool Processor when:

  • Your LLM calls tools or APIs
  • You need retries, timeouts, caching, or rate limits
  • You need to run untrusted tools safely
  • Your tools are local or remote (MCP)

Do not use this if:

  • You want an agent framework
  • You want conversation flow/memory orchestration

This is the execution layer, not the agent.

Not a framework. If LangChain/LlamaIndex help decide which tool to call, CHUK Tool Processor makes sure the tool call actually succeeds.

Table of Contents

The Problem

LLMs generate tool calls. The hard part is executing them reliably.

CHUK Tool Processor is that execution layer.

Why chuk-tool-processor?

Composable execution layers:

┌─────────────────────────────────┐
│   Your LLM Application          │
│   (handles prompts, responses)  │
└────────────┬────────────────────┘
             │ tool calls
             ▼
┌─────────────────────────────────┐
│   Caching Wrapper               │  ← Cache expensive results (idempotency keys)
├─────────────────────────────────┤
│   Rate Limiting Wrapper         │  ← Prevent API abuse
├─────────────────────────────────┤
│   Retry Wrapper                 │  ← Handle transient failures (exponential backoff)
├─────────────────────────────────┤
│   Circuit Breaker Wrapper       │  ← Prevent cascading failures (CLOSED/OPEN/HALF_OPEN)
├─────────────────────────────────┤
│   Execution Strategy            │  ← How to run tools
│   • InProcess (fast)            │
│   • Isolated (subprocess)       │
├─────────────────────────────────┤
│   Tool Registry                 │  ← Your registered tools
└─────────────────────────────────┘

Each layer is optional and configurable. Mix and match what you need.

It's a Building Block, Not a Framework

Unlike full-fledged LLM frameworks (LangChain, LlamaIndex, etc.), CHUK Tool Processor:

  • Does one thing well: Process tool calls reliably
  • Plugs into any LLM app: Works with any framework or no framework
  • Composable by design: Stack strategies and wrappers like middleware
  • No opinions about your LLM: Bring your own OpenAI, Anthropic, local model
  • Doesn't manage conversations: That's your job
  • Doesn't do prompt engineering: Use whatever prompting you want
  • Doesn't bundle an LLM client: Use any client library you prefer

It's Built for Production

Research code vs production code is about handling the edges. CHUK Tool Processor includes:

  • Timeouts — Every tool execution has proper timeout handling
  • Retries — Automatic retry with exponential backoff and deadline awareness
  • Rate Limiting — Global and per-tool rate limits with sliding windows → CONFIGURATION.md
  • Caching — Intelligent result caching with TTL and idempotency key support
  • Circuit Breakers — Prevent cascading failures with automatic fault detection
  • Idempotency — SHA256-based deduplication of LLM retry quirks
  • Error Handling — Machine-readable error codes with structured details → ERRORS.md
  • Observability — Structured logging, metrics, OpenTelemetry tracing → OBSERVABILITY.md
  • Safety — Subprocess isolation for untrusted code (zero crash blast radius)
  • Type Safety — PEP 561 compliant with full mypy support
  • Resource Management — Context managers for automatic cleanup
  • Tool Discovery — Formal schema export (OpenAI, Anthropic, MCP formats)
  • Cancellation — Cooperative cancellation with request-scoped deadlines

Compatibility Matrix

Runs the same on macOS, Linux, and Windows — locally, serverside, and inside containers.

Component Supported Versions Notes
Python 3.11, 3.12, 3.13 Python 3.11+ required
Operating Systems macOS, Linux, Windows All platforms fully supported
LLM Providers OpenAI, Anthropic, Local models Any LLM that outputs tool calls
MCP Transports HTTP Streamable, STDIO, SSE All MCP 1.0 transports
MCP Servers Notion, SQLite, Atlassian, Echo, Custom Any MCP-compliant server

Tested Configurations:

  • ✅ macOS 14+ (Apple Silicon & Intel)
  • ✅ Ubuntu 20.04+ / Debian 11+
  • ✅ Windows 10+ (native & WSL2)
  • ✅ Python 3.11.0+, 3.12.0+, 3.13.0+
  • ✅ OpenAI GPT-4, GPT-4 Turbo
  • ✅ Anthropic Claude 3 (Opus, Sonnet, Haiku)
  • ✅ Local models (Ollama, LM Studio)

Developer Experience Highlights

What makes CHUK Tool Processor easy to use:

  • Auto-parsing: XML (Claude), OpenAI tool_calls, direct JSON—all work automatically
  • One call: process() handles multiple calls & formats in a single invocation
  • Auto-coercion: Pydantic-powered argument cleanup (whitespace, type conversion, extra fields ignored)
  • Safe defaults: timeouts, retries, caching toggles built-in
  • Observability in one line: setup_observability(...) for traces + metrics
  • MCP in one call: setup_mcp_http_streamable|stdio|sse(...) connects to remote tools instantly
  • Context managers: async with ToolProcessor() as p: ensures automatic cleanup
  • Full type safety: PEP 561 compliant—mypy, pyright, and IDEs get complete type information

Quick Start

Installation

Prerequisites: Python 3.11+ • Works on macOS, Linux, Windows

# Using pip
pip install chuk-tool-processor

# Using uv (recommended)
uv pip install chuk-tool-processor
Install from source or with extras
# From source
git clone https://github.com/chrishayuk/chuk-tool-processor.git
cd chuk-tool-processor
uv pip install -e .

# With observability extras (OpenTelemetry + Prometheus)
pip install chuk-tool-processor[observability]

# With MCP extras
pip install chuk-tool-processor[mcp]

# All extras
pip install chuk-tool-processor[all]
Type Checking Support (PEP 561 compliant)

CHUK Tool Processor includes full type checking support:

# mypy, pyright, and IDEs get full type information!
from chuk_tool_processor import ToolProcessor, ToolCall, ToolResult

async with ToolProcessor() as processor:
    # Full autocomplete and type checking
    results: list[ToolResult] = await processor.process(llm_output)
    tools: list[str] = await processor.list_tools()

Features:

  • py.typed marker for PEP 561 compliance
  • ✅ Comprehensive type hints on all public APIs
  • ✅ Works with mypy, pyright, pylance
  • ✅ Full IDE autocomplete support

No special mypy configuration needed - just import and use!

60-Second Quick Start

From raw LLM output to safe execution in 3 lines

from chuk_tool_processor import ToolProcessor, initialize

await initialize()
async with ToolProcessor() as p:
    results = await p.process('<tool name="calculator" args=\'{"operation":"multiply","a":15,"b":23}\'/>')

Note: This assumes you've registered a "calculator" tool. See complete example below.

Works with Both OpenAI and Anthropic (No Adapters Needed)

from chuk_tool_processor import ToolProcessor, register_tool, initialize

@register_tool(name="search")
class SearchTool:
    async def execute(self, query: str) -> dict:
        return {"results": [f"Found: {query}"]}

await initialize()
async with ToolProcessor() as p:
    # OpenAI format
    openai_response = {"tool_calls": [{"type": "function", "function": {"name": "search", "arguments": '{"query": "Python"}'}}]}

    # Anthropic format
    anthropic_response = '<tool name="search" args=\'{"query": "Python"}\'/>'

    # Both work identically
    results_openai = await p.process(openai_response)
    results_anthropic = await p.process(anthropic_response)

Absolutely minimal example → See examples/01_getting_started/hello_tool.py:

python examples/01_getting_started/hello_tool.py

Single file that demonstrates:

  • Registering a tool
  • Parsing OpenAI & Anthropic formats
  • Executing and getting results

Takes 60 seconds to understand, 3 minutes to master.

3-Minute Example

Copy-paste this into a file and run it:

import asyncio
from chuk_tool_processor import ToolProcessor, tool

# Step 1: Define a tool with the clean @tool decorator
@tool(name="calculator")
class Calculator:
    async def execute(self, operation: str, a: float, b: float) -> dict:
        ops = {"add": a + b, "multiply": a * b, "subtract": a - b}
        if operation not in ops:
            raise ValueError(f"Unsupported operation: {operation}")
        return {"result": ops[operation]}

# Step 2: Process LLM output
async def main():
    # No initialize() needed - it auto-initializes!

    # Use context manager for automatic cleanup
    async with ToolProcessor() as processor:
        # Your LLM returned this tool call
        llm_output = '<tool name="calculator" args=\'{"operation": "multiply", "a": 15, "b": 23}\'/>'

        # Process it
        results = await processor.process(llm_output)

        # Each result is a ToolResult with: tool, result, error, duration, cached
        if results[0].error:
            print(f"Error: {results[0].error}")
        else:
            print(results[0].result)  # {'result': 345}

    # Processor automatically cleaned up!

asyncio.run(main())

That's it. You now have production-ready tool execution with:

  • ✅ Automatic timeouts, retries, and caching
  • ✅ Clean resource management (context manager)
  • ✅ Full type checking support
  • ✅ Auto-initialization (no boilerplate!)

Why not just use OpenAI tool calls? OpenAI's function calling is great for parsing, but you still need: parsing multiple formats (Anthropic XML, etc.), timeouts, retries, rate limits, caching, subprocess isolation, connecting to external MCP servers, and per-tool policy control with cross-provider parsing and MCP fan-out. CHUK Tool Processor is that missing middle layer.

Enhanced Developer Experience

CHUK Tool Processor provides intuitive APIs and helpful error messages:

1. Clean Decorator Syntax

from chuk_tool_processor import tool

@tool(name="calculator")  # Short and clean!
class Calculator:
    async def execute(self, a: int, b: int) -> int:
        return a + b

2. Auto-Initialization (No Boilerplate)

from chuk_tool_processor import ToolProcessor

# No initialize() needed - it auto-initializes!
async with ToolProcessor() as p:
    results = await p.process(llm_output)

3. Type-Safe Tool Discovery

from chuk_tool_processor import get_default_registry, ToolInfo

registry = await get_default_registry()

# List all registered tools with clear, typed results
tools = await registry.list_tools()
for tool in tools:  # Each tool is a ToolInfo object
    print(f"{tool.namespace}:{tool.name}")  # Clear attribute access!
    # No more confusing tuple unpacking: (namespace, name) vs (name, namespace)?

4. Helpful Error Messages

# Typo in tool name? Get helpful suggestions!
try:
    await registry.get_tool_strict("calcuator", namespace="default")
except Exception as e:
    print(e)
    # Output:
    # Tool 'calcuator' not found in namespace 'default'
    #
    # Did you mean: calculator?
    #
    # Available namespaces: default, math, mcp
    #
    # Tip: Use `await registry.list_tools()` to see all registered tools

5. Clean MCP Configuration

from chuk_tool_processor.mcp import setup_mcp_stdio, MCPConfig, MCPServerConfig

# Clean Pydantic config object instead of 14+ parameters!
processor, manager = await setup_mcp_stdio(
    config=MCPConfig(
        servers=[MCPServerConfig(name="echo", command="uvx", args=["mcp-echo"])],
        namespace="tools",
        enable_caching=True,
        cache_ttl=600,
    )
)

Key improvements:

  • @tool decorator: Shorter, cleaner than @register_tool
  • Auto-initialization: No need for explicit initialize() calls
  • Type-safe tool listing: ToolInfo objects instead of confusing tuples
  • Helpful errors: Fuzzy matching suggestions when tools aren't found
  • MCPConfig: Clean Pydantic model instead of 14+ parameters
  • Better discoverability: Clear guidance on how to explore available tools

Quick Decision Tree (Commit This to Memory)

╭──────────────────────────────────────────╮
│ Do you trust the code you're executing?  │
│   ✅ Yes → InProcessStrategy              │
│   ⚠️ No → IsolatedStrategy (sandboxed)     │
│                                          │
│ Where do your tools live?                │
│   📦 Local → @tool decorator              │
│   🌐 Remote → setup_mcp_* with MCPConfig  │
╰──────────────────────────────────────────╯

That's all you need to pick the right pattern.

Registry & Processor Lifecycle

Understanding the lifecycle helps you use CHUK Tool Processor correctly:

  1. Auto-initialization — Registry auto-initializes on first access (or call await initialize() explicitly)
  2. Create a ToolProcessor(...) (or use the one returned by setup_mcp_*)
  3. Use async with ToolProcessor() as p: to ensure cleanup
  4. setup_mcp_* returns (processor, manager) — reuse that processor
  5. If you need a custom registry, pass it explicitly to the strategy
  6. You rarely need get_default_registry() unless you're composing advanced setups

New in this version: The registry auto-initializes when you create a ToolProcessor or access get_default_registry(), so you can skip the explicit initialize() call in most cases!

# New simplified pattern (auto-initialization)
async with ToolProcessor() as p:  # Auto-initializes on first use!
    results = await p.process(llm_output)
    # Processor automatically cleaned up on exit

# Traditional explicit pattern (still works)
await initialize()  # Explicit initialization
async with ToolProcessor() as p:
    results = await p.process(llm_output)

Production Features by Example

Idempotency & Deduplication

Automatically deduplicate LLM retry quirks using SHA256-based idempotency keys:

from chuk_tool_processor import ToolProcessor, initialize

await initialize()
async with ToolProcessor(enable_caching=True, cache_ttl=300) as p:
    # LLM retries the same call (common with streaming or errors)
    call1 = '<tool name="search" args=\'{"query": "Python"}\'/>'
    call2 = '<tool name="search" args=\'{"query": "Python"}\'/>'  # Identical

    results1 = await p.process(call1)  # Executes
    results2 = await p.process(call2)  # Cache hit! (idempotency key match)

    assert results1[0].cached == False
    assert results2[0].cached == True

Cancellation & Deadlines

Cooperative cancellation with request-scoped deadlines:

import asyncio
from chuk_tool_processor import ToolProcessor, initialize

async def main():
    await initialize()
    async with ToolProcessor(default_timeout=60.0) as p:
        try:
            # Hard deadline for the whole batch (e.g., user request budget)
            async with asyncio.timeout(5.0):
                async for event in p.astream('<tool name="slow_report" args=\'{"n": 1000000}\'/>'):
                    print("chunk:", event)
        except TimeoutError:
            print("Request cancelled: deadline exceeded")
            # Processor automatically cancels the tool and cleans up

asyncio.run(main())

Per-Tool Policy Overrides

Override timeouts, retries, and rate limits per tool:

from chuk_tool_processor import ToolProcessor, initialize

await initialize()
async with ToolProcessor(
    default_timeout=30.0,
    enable_retries=True,
    max_retries=2,
    enable_rate_limiting=True,
    global_rate_limit=120,  # 120 requests/min across all tools
    tool_rate_limits={
        "expensive_api": (5, 60),  # 5 requests per 60 seconds
        "fast_local": (1000, 60),  # 1000 requests per 60 seconds
    }
) as p:
    # Tools run with their specific policies
    results = await p.process('''
        <tool name="expensive_api" args='{"q":"abc"}'/>
        <tool name="fast_local" args='{"data":"xyz"}'/>
    ''')

Documentation Quick Reference

Document What It Covers
📘 CONFIGURATION.md All config knobs & defaults: ToolProcessor options, timeouts, retry policy, rate limits, circuit breakers, caching, environment variables
🚨 ERRORS.md Error taxonomy: All error codes, exception classes, error details structure, handling patterns, retryability guide
📊 OBSERVABILITY.md Metrics & tracing: OpenTelemetry setup, Prometheus metrics, spans reference, PromQL queries
🔌 examples/01_getting_started/hello_tool.py 60-second starter: Single-file, copy-paste-and-run example
🎯 examples/ 20+ working examples: MCP integration, OAuth flows, streaming, production patterns

Choose Your Path

Use this when OpenAI/Claude tool calling is not enough — because you need retries, caching, rate limits, subprocess isolation, or MCP integration.

Your Goal What You Need Where to Look
Just process LLM tool calls Basic tool registration + processor 60-Second Quick Start
🔌 Connect to external tools MCP integration (HTTP/STDIO/SSE) MCP Integration
🛡️ Production deployment Timeouts, retries, rate limits, caching CONFIGURATION.md
🔒 Run untrusted code safely Isolated strategy (subprocess) Isolated Strategy
📊 Monitor and observe OpenTelemetry + Prometheus OBSERVABILITY.md
🌊 Stream incremental results StreamingTool pattern StreamingTool
🚨 Handle errors reliably Error codes & taxonomy ERRORS.md

Real-World Quick Start

Here are the most common patterns you'll use:

Pattern 1: Local tools only

import asyncio
from chuk_tool_processor import ToolProcessor, register_tool, initialize

@register_tool(name="my_tool")
class MyTool:
    async def execute(self, arg: str) -> dict:
        return {"result": f"Processed: {arg}"}

async def main():
    await initialize()

    async with ToolProcessor() as processor:
        llm_output = '<tool name="my_tool" args=\'{"arg": "hello"}\'/>'
        results = await processor.process(llm_output)
        print(results[0].result)  # {'result': 'Processed: hello'}

asyncio.run(main())
More patterns: MCP integration (local + remote tools)

Pattern 2: Mix local + remote MCP tools (Notion)

import asyncio
from chuk_tool_processor import register_tool, initialize, setup_mcp_http_streamable

@register_tool(name="local_calculator")
class Calculator:
    async def execute(self, a: int, b: int) -> int:
        return a + b

async def main():
    # Register local tools first
    await initialize()

    # Then add Notion MCP tools (requires OAuth token)
    processor, manager = await setup_mcp_http_streamable(
        servers=[{
            "name": "notion",
            "url": "https://mcp.notion.com/mcp",
            "headers": {"Authorization": f"Bearer {access_token}"}
        }],
        namespace="notion",
        initialization_timeout=120.0
    )

    # Now you have both local and remote tools!
    results = await processor.process('''
        <tool name="local_calculator" args='{"a": 5, "b": 3}'/>
        <tool name="notion.search_pages" args='{"query": "project docs"}'/>
    ''')
    print(f"Local result: {results[0].result}")
    print(f"Notion result: {results[1].result}")

    # Clean up
    await manager.close()

asyncio.run(main())

See examples/04_mcp_integration/notion_oauth.py for complete OAuth flow.

Pattern 3: Local SQLite database via STDIO (New Clean API)

import asyncio
from chuk_tool_processor.mcp import setup_mcp_stdio, MCPConfig, MCPServerConfig

async def main():
    # NEW: Clean Pydantic config approach (recommended!)
    processor, manager = await setup_mcp_stdio(
        config=MCPConfig(
            servers=[
                MCPServerConfig(
                    name="sqlite",
                    command="uvx",
                    args=["mcp-server-sqlite", "--db-path", "./app.db"],
                )
            ],
            namespace="db",
            initialization_timeout=120.0,  # First run downloads the package
            enable_caching=True,
            cache_ttl=600,
        )
    )

    # Query your local database via MCP
    results = await processor.process(
        '<tool name="db.query" args=\'{"sql": "SELECT * FROM users LIMIT 10"}\'/>'
    )
    print(results[0].result)

asyncio.run(main())
Legacy approach (still works)
import asyncio
import json
from chuk_tool_processor.mcp import setup_mcp_stdio

async def main():
    # Configure SQLite MCP server (runs locally)
    config = {
        "mcpServers": {
            "sqlite": {
                "command": "uvx",
                "args": ["mcp-server-sqlite", "--db-path", "./app.db"],
                "transport": "stdio"
            }
        }
    }

    with open("mcp_config.json", "w") as f:
        json.dump(config, f)

    processor, manager = await setup_mcp_stdio(
        config_file="mcp_config.json",
        servers=["sqlite"],
        namespace="db",
        initialization_timeout=120.0
    )

    # Query your local database via MCP
    results = await processor.process(
        '<tool name="db.query" args=\'{"sql": "SELECT * FROM users LIMIT 10"}\'/>'
    )
    print(results[0].result)

asyncio.run(main())

See examples/04_mcp_integration/stdio_sqlite.py for complete working example.

Core Concepts

1. Tool Registry

The registry is where you register tools for execution. Tools can be:

  • Simple classes with an async execute() method
  • ValidatedTool subclasses with Pydantic validation
  • StreamingTool for real-time incremental results
  • Functions registered via register_fn_tool()

Note: The registry is global, processors are scoped.

from chuk_tool_processor import register_tool
from chuk_tool_processor.models.validated_tool import ValidatedTool
from pydantic import BaseModel, Field

@register_tool(name="weather")
class WeatherTool(ValidatedTool):
    class Arguments(BaseModel):
        location: str = Field(..., description="City name")
        units: str = Field("celsius", description="Temperature units")

    class Result(BaseModel):
        temperature: float
        conditions: str

    async def _execute(self, location: str, units: str) -> Result:
        # Your weather API logic here
        return self.Result(temperature=22.5, conditions="Sunny")

2. Execution Strategies

Strategies determine how tools run:

Strategy Use Case Trade-offs
InProcessStrategy Fast, trusted tools Speed ✅, Isolation ❌
IsolatedStrategy Untrusted or risky code Isolation ✅, Speed ❌
import asyncio
from chuk_tool_processor import ToolProcessor, IsolatedStrategy, get_default_registry

async def main():
    registry = await get_default_registry()
    processor = ToolProcessor(
        strategy=IsolatedStrategy(
            registry=registry,
            max_workers=4,
            default_timeout=30.0
        )
    )
    # Use processor...

asyncio.run(main())

Note: IsolatedStrategy is an alias of SubprocessStrategy for backwards compatibility. Use IsolatedStrategy for clarity—it better communicates the security boundary intent.

3. Execution Wrappers (Middleware)

Wrappers add production features as composable layers:

processor = ToolProcessor(
    enable_caching=True,         # Cache expensive calls
    cache_ttl=600,               # 10 minutes
    enable_rate_limiting=True,   # Prevent abuse
    global_rate_limit=100,       # 100 req/min globally
    enable_retries=True,         # Auto-retry failures
    max_retries=3                # Up to 3 attempts
)

The processor stacks them automatically: Cache → Rate Limit → Retry → Strategy → Tool

4. Input Parsers (Plugins)

Parsers extract tool calls from various LLM output formats:

XML Tags (Anthropic-style)

<tool name="search" args='{"query": "Python"}'/>

OpenAI tool_calls (JSON)

{
  "tool_calls": [
    {
      "type": "function",
      "function": {
        "name": "search",
        "arguments": "{\"query\": \"Python\"}"
      }
    }
  ]
}

Direct JSON (array of calls)

[
  { "tool": "search", "arguments": { "query": "Python" } }
]

All formats work automatically—no configuration needed.

Input Format Compatibility:

Format Example Use Case
XML Tool Tag <tool name="search" args='{"q":"Python"}'/> Anthropic Claude, XML-based LLMs
OpenAI tool_calls JSON object (above) OpenAI GPT-4 function calling
Direct JSON [{"tool": "search", "arguments": {"q": "Python"}}] Generic API integrations
Single dict {"tool": "search", "arguments": {"q": "Python"}} Programmatic calls

5. MCP Integration (External Tools)

Connect to remote tool servers using the Model Context Protocol. CHUK Tool Processor supports three transport mechanisms for different use cases:

HTTP Streamable (⭐ Recommended for Cloud Services)

Use for: Cloud SaaS services (OAuth, long-running streams, resilient reconnects)

Modern HTTP streaming transport for cloud-based MCP servers like Notion:

from chuk_tool_processor.mcp import setup_mcp_http_streamable

# Connect to Notion MCP with OAuth
servers = [
    {
        "name": "notion",
        "url": "https://mcp.notion.com/mcp",
        "headers": {"Authorization": f"Bearer {access_token}"}
    }
]

processor, manager = await setup_mcp_http_streamable(
    servers=servers,
    namespace="notion",
    initialization_timeout=120.0,  # Some services need time to initialize
    enable_caching=True,
    enable_retries=True
)

# Use Notion tools through MCP
results = await processor.process(
    '<tool name="notion.search_pages" args=\'{"query": "meeting notes"}\'/>'
)
Other MCP Transports (STDIO for local tools, SSE for legacy)

STDIO (Best for Local/On-Device Tools)

Use for: Local/embedded tools and databases (SQLite, file systems, local services)

For running local MCP servers as subprocesses—great for databases, file systems, and local tools:

from chuk_tool_processor.mcp import setup_mcp_stdio
import json

# Configure SQLite MCP server
config = {
    "mcpServers": {
        "sqlite": {
            "command": "uvx",
            "args": ["mcp-server-sqlite", "--db-path", "/path/to/database.db"],
            "env": {"MCP_SERVER_NAME": "sqlite"},
            "transport": "stdio"
        }
    }
}

# Save config to file
with open("mcp_config.json", "w") as f:
    json.dump(config, f)

# Connect to local SQLite server
processor, manager = await setup_mcp_stdio(
    config_file="mcp_config.json",
    servers=["sqlite"],
    namespace="db",
    initialization_timeout=120.0  # First run downloads packages
)

# Query your local database via MCP
results = await processor.process(
    '<tool name="db.query" args=\'{"sql": "SELECT * FROM users LIMIT 10"}\'/>'
)

SSE (Legacy Support)

Use for: Legacy compatibility only. Prefer HTTP Streamable for new integrations.

For backward compatibility with older MCP servers using Server-Sent Events:

from chuk_tool_processor.mcp import setup_mcp_sse

# Connect to Atlassian with OAuth via SSE
servers = [
    {
        "name": "atlassian",
        "url": "https://mcp.atlassian.com/v1/sse",
        "headers": {"Authorization": f"Bearer {access_token}"}
    }
]

processor, manager = await setup_mcp_sse(
    servers=servers,
    namespace="atlassian",
    initialization_timeout=120.0
)

Transport Comparison:

Transport Use Case Real Examples
HTTP Streamable Cloud APIs, SaaS services Notion (mcp.notion.com)
STDIO Local tools, databases SQLite (mcp-server-sqlite), Echo (chuk-mcp-echo)
SSE Legacy cloud services Atlassian (mcp.atlassian.com)

How MCP fits into the architecture:

    LLM Output
        ↓
  Tool Processor
        ↓
 ┌──────────────┬────────────────────┐
 │ Local Tools  │ Remote Tools (MCP) │
 └──────────────┴────────────────────┘

Relationship with chuk-mcp:

  • chuk-mcp is a low-level MCP protocol client (handles transports, protocol negotiation)
  • chuk-tool-processor wraps chuk-mcp to integrate external tools into your execution pipeline
  • You can use local tools, remote MCP tools, or both in the same processor

Getting Started

Creating Tools

CHUK Tool Processor supports multiple patterns for defining tools:

Simple Function-Based Tools

from chuk_tool_processor import register_fn_tool
from datetime import datetime
from zoneinfo import ZoneInfo

def get_current_time(timezone: str = "UTC") -> str:
    """Get the current time in the specified timezone."""
    now = datetime.now(ZoneInfo(timezone))
    return now.strftime("%Y-%m-%d %H:%M:%S %Z")

# Register the function as a tool (sync — no await needed)
register_fn_tool(get_current_time, namespace="utilities")

ValidatedTool (Pydantic Type Safety)

For production tools, use Pydantic validation:

from chuk_tool_processor import tool
from chuk_tool_processor.models import ValidatedTool
from pydantic import BaseModel, Field

@tool(name="weather")  # Clean @tool decorator
class WeatherTool(ValidatedTool):
    class Arguments(BaseModel):
        location: str = Field(..., description="City name")
        units: str = Field("celsius", description="Temperature units")

    class Result(BaseModel):
        temperature: float
        conditions: str

    async def _execute(self, location: str, units: str) -> Result:
        return self.Result(temperature=22.5, conditions="Sunny")
Alternative: Using @register_tool (still works)
from chuk_tool_processor import register_tool

@register_tool(name="weather")  # Longer form, but identical functionality
class WeatherTool(ValidatedTool):
    # ... same as above

StreamingTool (Real-time Results)

For long-running operations that produce incremental results:

from chuk_tool_processor import tool
from chuk_tool_processor.models import StreamingTool
from pydantic import BaseModel

@tool(name="file_processor")  # Clean @tool decorator
class FileProcessor(StreamingTool):
    class Arguments(BaseModel):
        file_path: str

    class Result(BaseModel):
        line: int
        content: str

    async def _stream_execute(self, file_path: str):
        with open(file_path) as f:
            for i, line in enumerate(f, 1):
                yield self.Result(line=i, content=line.strip())

Consuming streaming results:

import asyncio
from chuk_tool_processor import ToolProcessor, initialize

async def main():
    await initialize()
    processor = ToolProcessor()

    # Stream can be cancelled by breaking or raising an exception
    try:
        async for event in processor.astream('<tool name="file_processor" args=\'{"file_path":"README.md"}\'/>'):
            # 'event' is a streamed chunk (either your Result model instance or a dict)
            line = event["line"] if isinstance(event, dict) else getattr(event, "line", None)
            content = event["content"] if isinstance(event, dict) else getattr(event, "content", None)
            print(f"Line {line}: {content}")

            # Example: cancel after 100 lines
            if line and line > 100:
                break  # Cleanup happens automatically
    except asyncio.CancelledError:
        # Stream cleanup is automatic even on cancellation
        pass

asyncio.run(main())

Using the Processor

Basic Usage

Call await initialize() once at startup to load your registry. Use context managers for automatic cleanup:

import asyncio
from chuk_tool_processor import ToolProcessor, initialize

async def main():
    await initialize()

    # Context manager automatically handles cleanup
    async with ToolProcessor() as processor:
        # Discover available tools
        tools = await processor.list_tools()
        print(f"Available tools: {tools}")

        # Process LLM output
        llm_output = '<tool name="calculator" args=\'{"operation":"add","a":2,"b":3}\'/>'
        results = await processor.process(llm_output)

        for result in results:
            if result.error:
                print(f"Error: {result.error}")
            else:
                print(f"Success: {result.result}")

    # Processor automatically cleaned up here!

asyncio.run(main())

Production Configuration

from chuk_tool_processor import ToolProcessor, initialize
import asyncio

async def main():
    await initialize()

    # Use context manager with production config
    async with ToolProcessor(
        # Execution settings
        default_timeout=30.0,
        max_concurrency=20,

        # Production features
        enable_caching=True,
        cache_ttl=600,
        enable_rate_limiting=True,
        global_rate_limit=100,
        enable_retries=True,
        max_retries=3
    ) as processor:
        # Use processor...
        results = await processor.process(llm_output)

    # Automatic cleanup on exit

asyncio.run(main())

Advanced Production Features

Beyond basic configuration, CHUK Tool Processor includes several advanced features for production environments:

Circuit Breaker Pattern

Prevent cascading failures by automatically opening circuits for failing tools:

from chuk_tool_processor import ToolProcessor

processor = ToolProcessor(
    enable_circuit_breaker=True,
    circuit_breaker_threshold=5,      # Open after 5 failures
    circuit_breaker_timeout=60.0,     # Try recovery after 60s
)

# Circuit states: CLOSED → OPEN → HALF_OPEN → CLOSED
# - CLOSED: Normal operation
# - OPEN: Blocking requests (too many failures)
# - HALF_OPEN: Testing recovery with limited requests

How it works:

  1. Tool fails repeatedly (hits threshold)
  2. Circuit opens → requests blocked immediately
  3. After timeout, circuit enters HALF_OPEN
  4. If test requests succeed → circuit closes
  5. If test requests fail → back to OPEN

Benefits:

  • Prevents wasting resources on failing services
  • Fast-fail for better UX
  • Automatic recovery detection

Idempotency Keys

Automatically deduplicate LLM tool calls using SHA256-based keys:

from chuk_tool_processor.models.tool_call import ToolCall

# Idempotency keys are auto-generated
call1 = ToolCall(tool="search", arguments={"query": "Python"})
call2 = ToolCall(tool="search", arguments={"query": "Python"})

# Same arguments = same idempotency key
assert call1.idempotency_key == call2.idempotency_key

# Used automatically by caching layer
processor = ToolProcessor(enable_caching=True)
results1 = await processor.process([call1])  # Executes
results2 = await processor.process([call2])  # Cache hit!

Benefits:

  • Prevents duplicate executions from LLM retries
  • Deterministic cache keys
  • No manual key management needed

Cache scope: In-memory per-process by default. Cache backend is pluggable—see CONFIGURATION.md for custom cache backends.

Tool Schema Export

Export tool definitions to multiple formats for LLM prompting:

from chuk_tool_processor.models.tool_spec import ToolSpec, ToolCapability
from chuk_tool_processor.models.validated_tool import ValidatedTool

@register_tool(name="weather")
class WeatherTool(ValidatedTool):
    """Get current weather for a location."""

    class Arguments(BaseModel):
        location: str = Field(..., description="City name")

    class Result(BaseModel):
        temperature: float
        conditions: str

# Generate tool spec
spec = ToolSpec.from_validated_tool(WeatherTool)

# Export to different formats
openai_format = spec.to_openai()       # For OpenAI function calling
anthropic_format = spec.to_anthropic() # For Claude tools
mcp_format = spec.to_mcp()             # For MCP servers

# Example OpenAI format:
# {
#   "type": "function",
#   "function": {
#     "name": "weather",
#     "description": "Get current weather for a location.",
#     "parameters": {...}  # JSON Schema
#   }
# }

Use cases:

  • Generate tool definitions for LLM system prompts
  • Documentation generation
  • API contract validation
  • Cross-platform tool sharing

Machine-Readable Error Codes

Structured error handling with error codes for programmatic responses.

Error Contract: Every error includes a machine-readable code, human-readable message, and structured details:

from chuk_tool_processor.core.exceptions import (
    ErrorCode,
    ToolNotFoundError,
    ToolTimeoutError,
    ToolCircuitOpenError,
)

try:
    results = await processor.process(llm_output)
except ToolNotFoundError as e:
    if e.code == ErrorCode.TOOL_NOT_FOUND:
        # Suggest available tools to LLM
        available = e.details.get("available_tools", [])
        print(f"Try one of: {available}")
except ToolTimeoutError as e:
    if e.code == ErrorCode.TOOL_TIMEOUT:
        # Inform LLM to use faster alternative
        timeout = e.details["timeout"]
        print(f"Tool timed out after {timeout}s")
except ToolCircuitOpenError as e:
    if e.code == ErrorCode.TOOL_CIRCUIT_OPEN:
        # Tell LLM this service is temporarily down
        reset_time = e.details.get("reset_timeout")
        print(f"Service unavailable, retry in {reset_time}s")

# All errors include .to_dict() for logging
error_dict = e.to_dict()
# {
#   "error": "ToolCircuitOpenError",
#   "code": "TOOL_CIRCUIT_OPEN",
#   "message": "Tool 'api_tool' circuit breaker is open...",
#   "details": {"tool_name": "api_tool", "failure_count": 5, ...}
# }

Available error codes:

  • TOOL_NOT_FOUND - Tool doesn't exist in registry
  • TOOL_EXECUTION_FAILED - Tool execution error
  • TOOL_TIMEOUT - Tool exceeded timeout
  • TOOL_CIRCUIT_OPEN - Circuit breaker is open
  • TOOL_RATE_LIMITED - Rate limit exceeded
  • TOOL_VALIDATION_ERROR - Argument validation failed
  • MCP_CONNECTION_FAILED - MCP server unreachable
  • Plus 11 more for comprehensive error handling

LLM-Friendly Argument Coercion

Automatically coerce LLM outputs to correct types:

from chuk_tool_processor.models.validated_tool import ValidatedTool

class SearchTool(ValidatedTool):
    class Arguments(BaseModel):
        query: str
        limit: int = 10
        category: str = "all"

    # Pydantic config for LLM outputs:
    # - str_strip_whitespace=True    → Remove accidental whitespace
    # - extra="ignore"               → Ignore unknown fields
    # - use_enum_values=True         → Convert enums to values
    # - coerce_numbers_to_str=False  → Keep type strictness

# LLM outputs often have quirks:
llm_output = {
    "query": "  Python tutorials  ",  # Extra whitespace
    "limit": "5",                      # String instead of int
    "unknown_field": "ignored"         # Extra field
}

# ValidatedTool automatically coerces and validates
tool = SearchTool()
result = await tool.execute(**llm_output)
# ✅ Works! Whitespace stripped, "5" → 5, extra field ignored

Advanced Topics

Using Isolated Strategy

Use IsolatedStrategy when running untrusted, third-party, or potentially unsafe code that shouldn't share the same process as your main app.

For isolation and safety when running untrusted code:

import asyncio
from chuk_tool_processor import ToolProcessor, IsolatedStrategy, get_default_registry

async def main():
    registry = await get_default_registry()
    processor = ToolProcessor(
        strategy=IsolatedStrategy(
            registry=registry,
            max_workers=4,
            default_timeout=30.0
        )
    )
    # Use processor...

asyncio.run(main())

Security & Isolation — Threat Model

Untrusted tool code runs in subprocesses; faults and crashes don't bring down your app. Zero crash blast radius. For hard CPU/RAM/network limits, run the processor inside a container with --cpus, --memory, and egress filtering. Secrets are never injected by default—pass them explicitly via tool arguments or scoped environment variables.

Real-World MCP Examples

Example 1: Notion Integration with OAuth

Complete OAuth flow connecting to Notion's MCP server:

from chuk_tool_processor.mcp import setup_mcp_http_streamable

# After completing OAuth flow (see examples/04_mcp_integration/notion_oauth.py for full flow)
processor, manager = await setup_mcp_http_streamable(
    servers=[{
        "name": "notion",
        "url": "https://mcp.notion.com/mcp",
        "headers": {"Authorization": f"Bearer {access_token}"}
    }],
    namespace="notion",
    initialization_timeout=120.0
)

# Get available Notion tools
tools = manager.get_all_tools()
print(f"Available tools: {[t['name'] for t in tools]}")

# Use Notion tools in your LLM workflow
results = await processor.process(
    '<tool name="notion.search_pages" args=\'{"query": "Q4 planning"}\'/>'
)
Click to expand more MCP examples (SQLite, Echo Server)

Example 2: Local SQLite Database Access

Run SQLite MCP server locally for database operations:

from chuk_tool_processor.mcp import setup_mcp_stdio
import json

# Configure SQLite server
config = {
    "mcpServers": {
        "sqlite": {
            "command": "uvx",
            "args": ["mcp-server-sqlite", "--db-path", "./data/app.db"],
            "transport": "stdio"
        }
    }
}

with open("mcp_config.json", "w") as f:
    json.dump(config, f)

# Connect to local database
processor, manager = await setup_mcp_stdio(
    config_file="mcp_config.json",
    servers=["sqlite"],
    namespace="db",
    initialization_timeout=120.0  # First run downloads mcp-server-sqlite
)

# Query your database via LLM
results = await processor.process(
    '<tool name="db.query" args=\'{"sql": "SELECT COUNT(*) FROM users"}\'/>'
)

Example 3: Simple STDIO Echo Server

Minimal example for testing STDIO transport:

from chuk_tool_processor.mcp import setup_mcp_stdio
import json

# Configure echo server (great for testing)
config = {
    "mcpServers": {
        "echo": {
            "command": "uvx",
            "args": ["chuk-mcp-echo", "stdio"],
            "transport": "stdio"
        }
    }
}

with open("echo_config.json", "w") as f:
    json.dump(config, f)

processor, manager = await setup_mcp_stdio(
    config_file="echo_config.json",
    servers=["echo"],
    namespace="echo",
    initialization_timeout=60.0
)

# Test echo functionality
results = await processor.process(
    '<tool name="echo.echo" args=\'{"message": "Hello MCP!"}\'/>'
)

See examples/04_mcp_integration/notion_oauth.py, examples/04_mcp_integration/stdio_sqlite.py, and examples/04_mcp_integration/stdio_echo.py for complete working implementations.

OAuth Token Refresh

Click to expand OAuth token refresh guide

For MCP servers that use OAuth authentication, CHUK Tool Processor supports automatic token refresh when access tokens expire. This prevents your tools from failing due to expired tokens during long-running sessions.

How it works:

  1. When a tool call receives an OAuth-related error (e.g., "invalid_token", "expired token", "unauthorized")
  2. The processor automatically calls your refresh callback
  3. Updates the authentication headers with the new token
  4. Retries the tool call with fresh credentials

Setup with HTTP Streamable:

from chuk_tool_processor.mcp import setup_mcp_http_streamable

async def refresh_oauth_token():
    """Called automatically when tokens expire."""
    # Your token refresh logic here
    # Return dict with new Authorization header
    new_token = await your_refresh_logic()
    return {"Authorization": f"Bearer {new_token}"}

processor, manager = await setup_mcp_http_streamable(
    servers=[{
        "name": "notion",
        "url": "https://mcp.notion.com/mcp",
        "headers": {"Authorization": f"Bearer {initial_access_token}"}
    }],
    namespace="notion",
    oauth_refresh_callback=refresh_oauth_token  # Enable auto-refresh
)

Setup with SSE:

from chuk_tool_processor.mcp import setup_mcp_sse

async def refresh_oauth_token():
    """Refresh expired OAuth token."""
    # Exchange refresh token for new access token
    new_access_token = await exchange_refresh_token(refresh_token)
    return {"Authorization": f"Bearer {new_access_token}"}

processor, manager = await setup_mcp_sse(
    servers=[{
        "name": "atlassian",
        "url": "https://mcp.atlassian.com/v1/sse",
        "headers": {"Authorization": f"Bearer {initial_token}"}
    }],
    namespace="atlassian",
    oauth_refresh_callback=refresh_oauth_token
)

OAuth errors detected automatically:

  • invalid_token
  • expired token
  • OAuth validation failed
  • unauthorized
  • token expired
  • authentication failed
  • invalid access token

Important notes:

  • The refresh callback must return a dict with an Authorization key
  • If refresh fails or returns invalid headers, the original error is returned
  • Token refresh is attempted only once per tool call (no infinite retry loops)
  • After successful refresh, the updated headers are used for all subsequent calls

See examples/04_mcp_integration/notion_oauth.py for a complete OAuth 2.1 implementation with PKCE and automatic token refresh.

Observability

Structured Logging

Enable JSON logging for production observability:

import asyncio
from chuk_tool_processor.logging import setup_logging, get_logger

async def main():
    await setup_logging(
        level="INFO",
        structured=True,  # JSON output (structured=False for human-readable)
        log_file="tool_processor.log"
    )
    logger = get_logger("my_app")
    logger.info("logging ready")

asyncio.run(main())

When structured=True, logs are output as JSON. When structured=False, they're human-readable text.

Example JSON log output:

{
  "timestamp": "2025-01-15T10:30:45.123Z",
  "level": "INFO",
  "tool": "calculator",
  "status": "success",
  "duration_ms": 4.2,
  "cached": false,
  "attempts": 1
}

Automatic Metrics

Metrics are automatically collected for:

  • ✅ Tool execution (success/failure rates, duration)
  • ✅ Cache performance (hit/miss rates)
  • ✅ Parser accuracy (which parsers succeeded)
  • ✅ Retry attempts (how many retries per tool)

Access metrics programmatically:

import asyncio
from chuk_tool_processor.logging import metrics

async def main():
    # Metrics are logged automatically, but you can also access them
    await metrics.log_tool_execution(
        tool="custom_tool",
        success=True,
        duration=1.5,
        cached=False,
        attempts=1
    )

asyncio.run(main())

OpenTelemetry & Prometheus (Drop-in Observability)

Click to expand complete observability guide

3-Line Setup:

from chuk_tool_processor.observability import setup_observability

setup_observability(
    service_name="my-tool-service",
    enable_tracing=True,     # → OpenTelemetry traces
    enable_metrics=True,     # → Prometheus metrics at :9090/metrics
    metrics_port=9090
)
# That's it! Every tool execution is now automatically traced and metered.

What you get automatically:

  • ✅ Distributed traces (Jaeger, Zipkin, any OTLP collector)
  • ✅ Prometheus metrics (error rate, latency P50/P95/P99, cache hit rate)
  • ✅ Circuit breaker state monitoring
  • ✅ Retry attempt tracking
  • ✅ Zero code changes to your tools

Why Telemetry Matters: In production, you need to know what your tools are doing, how long they take, when they fail, and why. CHUK Tool Processor provides enterprise-grade telemetry that operations teams expect—with zero manual instrumentation.

What You Get (Automatically)

Distributed Traces - Understand exactly what happened in each tool call

  • See the complete execution timeline for every tool
  • Track retries, cache hits, circuit breaker state changes
  • Correlate failures across your system
  • Export to Jaeger, Zipkin, or any OTLP-compatible backend

Production Metrics - Monitor health and performance in real-time

  • Track error rates, latency percentiles (P50/P95/P99)
  • Monitor cache hit rates and retry attempts
  • Alert on circuit breaker opens and rate limit hits
  • Export to Prometheus, Grafana, or any metrics backend

Zero Configuration - Works out of the box

  • No manual instrumentation needed
  • No code changes to existing tools
  • Gracefully degrades if packages not installed
  • Standard OTEL and Prometheus formats

Installation

# Install observability dependencies
pip install chuk-tool-processor[observability]

# Or manually
pip install opentelemetry-api opentelemetry-sdk opentelemetry-exporter-otlp prometheus-client

# Or with uv (recommended)
uv pip install chuk-tool-processor --group observability

⚠️ SRE Note: Observability packages are optional. If not installed, all observability calls are no-ops—your tools run normally without tracing/metrics. Zero crashes, zero warnings. Safe to deploy without observability dependencies.

Quick Start: See Your Tools in Action

import asyncio
from chuk_tool_processor.observability import setup_observability
from chuk_tool_processor import ToolProcessor, initialize, register_tool

@register_tool(name="weather_api")
class WeatherTool:
    async def execute(self, location: str) -> dict:
        # Simulating API call
        return {"temperature": 72, "conditions": "sunny", "location": location}

async def main():
    # 1. Enable observability (one line!)
    setup_observability(
        service_name="weather-service",
        enable_tracing=True,
        enable_metrics=True,
        metrics_port=9090
    )

    # 2. Create processor with production features
    await initialize()
    processor = ToolProcessor(
        enable_caching=True,         # Cache expensive API calls
        enable_retries=True,         # Auto-retry on failures
        enable_circuit_breaker=True, # Prevent cascading failures
        enable_rate_limiting=True,   # Prevent API abuse
    )

    # 3. Execute tools - automatically traced and metered
    results = await processor.process(
        '<tool name="weather_api" args=\'{"location": "San Francisco"}\'/>'
    )

    print(f"Result: {results[0].result}")
    print(f"Duration: {results[0].duration}s")
    print(f"Cached: {results[0].cached}")

asyncio.run(main())

View Your Data

# Start Jaeger for trace visualization
docker run -d -p 4317:4317 -p 16686:16686 jaegertracing/all-in-one:latest

# Start your application
python your_app.py

# View distributed traces
open http://localhost:16686

# View Prometheus metrics
curl http://localhost:9090/metrics | grep tool_

What Gets Traced (Automatic Spans)

Every execution layer creates standardized OpenTelemetry spans:

Span Name When Created Key Attributes
tool.execute Every tool execution tool.name, tool.namespace, tool.duration_ms, tool.cached, tool.error, tool.success
tool.cache.lookup Cache lookup cache.hit (true/false), cache.operation=lookup
tool.cache.set Cache write cache.ttl, cache.operation=set
tool.retry.attempt Each retry retry.attempt, retry.max_attempts, retry.success
tool.circuit_breaker.check Circuit state check circuit.state (CLOSED/OPEN/HALF_OPEN)
tool.rate_limit.check Rate limit check rate_limit.allowed (true/false)

Example trace hierarchy:

tool.execute (weather_api)
├── tool.cache.lookup (miss)
├── tool.retry.attempt (0)
│   └── tool.execute (actual API call)
├── tool.retry.attempt (1) [if first failed]
└── tool.cache.set (store result)

What Gets Metered (Automatic Metrics)

Standard Prometheus metrics exposed at /metrics:

Metric Type Labels Use For
tool_executions_total Counter tool, namespace, status Error rate, request volume
tool_execution_duration_seconds Histogram tool, namespace P50/P95/P99 latency
tool_cache_operations_total Counter tool, operation, result Cache hit rate
tool_retry_attempts_total Counter tool, attempt, success Retry frequency
tool_circuit_breaker_state Gauge tool Circuit health (0=CLOSED, 1=OPEN, 2=HALF_OPEN)
tool_circuit_breaker_failures_total Counter tool Failure count
tool_rate_limit_checks_total Counter tool, allowed Rate limit hits

Useful PromQL Queries

# Error rate per tool (last 5 minutes)
rate(tool_executions_total{status="error"}[5m])
/ rate(tool_executions_total[5m])

# P95 latency
histogram_quantile(0.95, rate(tool_execution_duration_seconds_bucket[5m]))

# Cache hit rate
rate(tool_cache_operations_total{result="hit"}[5m])
/ rate(tool_cache_operations_total{operation="lookup"}[5m])

# Tools currently circuit broken
tool_circuit_breaker_state == 1

# Retry rate (how often tools need retries)
rate(tool_retry_attempts_total{attempt!="0"}[5m])
/ rate(tool_executions_total[5m])

Configuration

Configure via environment variables:

# OTLP endpoint (where traces are sent)
export OTEL_EXPORTER_OTLP_ENDPOINT=http://otel-collector:4317

# Service name (shown in traces)
export OTEL_SERVICE_NAME=production-api

# Sampling (reduce overhead in high-traffic scenarios)
export OTEL_TRACES_SAMPLER=traceidratio
export OTEL_TRACES_SAMPLER_ARG=0.1  # Sample 10% of traces

Or in code:

status = setup_observability(
    service_name="my-service",
    enable_tracing=True,
    enable_metrics=True,
    metrics_port=9090,
    metrics_host="0.0.0.0"  # Allow external Prometheus scraping
)

# Check status
if status["tracing_enabled"]:
    print("Traces exporting to OTLP endpoint")
if status["metrics_server_started"]:
    print("Metrics available at http://localhost:9090/metrics")

Production Integration

With Grafana + Prometheus:

# prometheus.yml
scrape_configs:
  - job_name: 'chuk-tool-processor'
    scrape_interval: 15s
    static_configs:
      - targets: ['app:9090']

With OpenTelemetry Collector:

# otel-collector-config.yaml
receivers:
  otlp:
    protocols:
      grpc:
        endpoint: 0.0.0.0:4317

exporters:
  jaeger:
    endpoint: jaeger:14250
  prometheus:
    endpoint: 0.0.0.0:8889

service:
  pipelines:
    traces:
      receivers: [otlp]
      exporters: [jaeger]

With Cloud Providers:

# AWS X-Ray
export OTEL_TRACES_SAMPLER=xray

# Google Cloud Trace
export OTEL_EXPORTER_OTLP_ENDPOINT=https://cloudtrace.googleapis.com/v1/projects/PROJECT_ID/traces

# Datadog
export OTEL_EXPORTER_OTLP_ENDPOINT=http://datadog-agent:4317

Why This Matters

Without telemetry:

  • "Why is this tool slow?" → No idea
  • "Is caching helping?" → Guessing
  • "Did that retry work?" → Check logs manually
  • "Is the circuit breaker working?" → Hope so
  • "Which tool is failing?" → Debug blindly

With telemetry:

  • See exact execution timeline in Jaeger
  • Monitor cache hit rate in Grafana
  • Alert when retry rate spikes
  • Dashboard shows circuit breaker states
  • Metrics pinpoint the failing tool immediately

Learn More

📖 Complete Guide: See OBSERVABILITY.md for:

  • Complete span and metric specifications
  • Architecture and implementation details
  • Integration guides (Jaeger, Grafana, OTEL Collector)
  • Testing observability features
  • Environment variable configuration

🎯 Working Example: See examples/02_production_features/observability_demo.py for a complete demonstration with retries, caching, and circuit breakers

Benefits

Drop-in - One function call, zero code changes ✅ Automatic - All execution layers instrumented ✅ Standard - OTEL + Prometheus (works with existing tools) ✅ Production-ready - Ops teams get exactly what they expect ✅ Optional - Gracefully degrades if packages not installed ✅ Zero-overhead - No performance impact when disabled

Error Handling

results = await processor.process(llm_output)

for result in results:
    if result.error:
        print(f"Tool '{result.tool}' failed: {result.error}")
        print(f"Duration: {result.duration}s")
    else:
        print(f"Tool '{result.tool}' succeeded: {result.result}")

Testing Tools

import pytest
from chuk_tool_processor import ToolProcessor, initialize

@pytest.mark.asyncio
async def test_calculator():
    await initialize()
    processor = ToolProcessor()

    results = await processor.process(
        '<tool name="calculator" args=\'{"operation": "add", "a": 5, "b": 3}\'/>'
    )

    assert results[0].result["result"] == 8

Fake tool pattern for testing:

import pytest
from chuk_tool_processor import ToolProcessor, register_tool, initialize

@register_tool(name="fake_tool")
class FakeTool:
    """No-op tool for testing processor behavior."""
    call_count = 0

    async def execute(self, **kwargs) -> dict:
        FakeTool.call_count += 1
        return {"called": True, "args": kwargs}

@pytest.mark.asyncio
async def test_processor_with_fake_tool():
    await initialize()
    processor = ToolProcessor()

    # Reset counter
    FakeTool.call_count = 0

    # Execute fake tool
    results = await processor.process(
        '<tool name="fake_tool" args=\'{"test_arg": "value"}\'/>'
    )

    # Assert behavior
    assert FakeTool.call_count == 1
    assert results[0].result["called"] is True
    assert results[0].result["args"]["test_arg"] == "value"

Configuration

Timeout Configuration

CHUK Tool Processor uses a unified timeout configuration system that applies to all MCP transports (HTTP Streamable, SSE, STDIO) and the StreamManager. Instead of managing dozens of individual timeout values, there are just 4 logical timeout categories:

from chuk_tool_processor.mcp.transport import TimeoutConfig

# Create custom timeout configuration
# (Defaults are: connect=30, operation=30, quick=5, shutdown=2)
timeout_config = TimeoutConfig(
    connect=30.0,     # Connection establishment, initialization, session discovery
    operation=30.0,   # Normal operations (tool calls, listing tools/resources/prompts)
    quick=5.0,        # Fast health checks and pings
    shutdown=2.0      # Cleanup and shutdown operations
)

Using timeout configuration with StreamManager:

from chuk_tool_processor.mcp.stream_manager import StreamManager
from chuk_tool_processor.mcp.transport import TimeoutConfig

# Create StreamManager with custom timeouts
timeout_config = TimeoutConfig(
    connect=60.0,     # Longer for slow initialization
    operation=45.0,   # Longer for heavy operations
    quick=3.0,        # Faster health checks
    shutdown=5.0      # More time for cleanup
)

manager = StreamManager(timeout_config=timeout_config)

Timeout categories explained:

Category Default Used For Examples
connect 30.0s Connection setup, initialization, discovery HTTP connection, SSE session discovery, STDIO subprocess launch
operation 30.0s Normal tool operations Tool calls, listing tools/resources/prompts, get_tools()
quick 5.0s Fast health/status checks Ping operations, health checks
shutdown 2.0s Cleanup and teardown Transport close, connection cleanup

Why this matters:

  • Simple: 4 timeout values instead of 20+
  • Consistent: Same timeout behavior across all transports
  • Configurable: Adjust timeouts based on your environment (slow networks, large datasets, etc.)
  • Type-safe: Pydantic validation ensures correct values

Example: Adjusting for slow environments

from chuk_tool_processor.mcp import setup_mcp_stdio
from chuk_tool_processor.mcp.transport import TimeoutConfig

# For slow network or resource-constrained environments
slow_timeouts = TimeoutConfig(
    connect=120.0,    # Allow more time for package downloads
    operation=60.0,   # Allow more time for heavy operations
    quick=10.0,       # Be patient with health checks
    shutdown=10.0     # Allow thorough cleanup
)

processor, manager = await setup_mcp_stdio(
    config_file="mcp_config.json",
    servers=["sqlite"],
    namespace="db",
    initialization_timeout=120.0
)

# Set custom timeouts on the manager
manager.timeout_config = slow_timeouts

Environment Variables

Variable Default Description
CHUK_TOOL_REGISTRY_PROVIDER memory Registry backend
CHUK_DEFAULT_TIMEOUT 30.0 Default timeout (seconds)
CHUK_LOG_LEVEL INFO Logging level
CHUK_STRUCTURED_LOGGING true Enable JSON logging
MCP_BEARER_TOKEN - Bearer token for MCP SSE

ToolProcessor Options

processor = ToolProcessor(
    default_timeout=30.0,           # Timeout per tool
    max_concurrency=10,             # Max concurrent executions
    enable_caching=True,            # Result caching
    cache_ttl=300,                  # Cache TTL (seconds)
    enable_rate_limiting=False,     # Rate limiting
    global_rate_limit=None,         # (requests per minute) global cap
    enable_retries=True,            # Auto-retry failures
    max_retries=3,                  # Max retry attempts
    # Optional per-tool rate limits: {"tool.name": (requests, per_seconds)}
    tool_rate_limits=None
)

Performance & Tuning

Parameter Default When to Adjust
default_timeout 30.0 Increase for slow tools (e.g., AI APIs)
max_concurrency 10 Increase for I/O-bound tools, decrease for CPU-bound
enable_caching True Keep on for deterministic tools
cache_ttl 300 Longer for stable data, shorter for real-time
enable_rate_limiting False Enable when hitting API rate limits
global_rate_limit None Set a global requests/min cap across all tools
enable_retries True Disable for non-idempotent operations
max_retries 3 Increase for flaky external APIs
tool_rate_limits None Dict mapping tool name → (max_requests, window_seconds). Overrides global_rate_limit per tool

Per-tool rate limiting example:

processor = ToolProcessor(
    enable_rate_limiting=True,
    global_rate_limit=100,  # 100 requests/minute across all tools
    tool_rate_limits={
        "notion.search_pages": (10, 60),  # 10 requests per 60 seconds
        "expensive_api": (5, 60),          # 5 requests per minute
        "local_tool": (1000, 60),          # 1000 requests per minute (local is fast)
    }
)

Security Model

CHUK Tool Processor provides multiple layers of safety:

Concern Protection Configuration
Timeouts Every tool has a timeout default_timeout=30.0
Process Isolation Run tools in separate processes strategy=IsolatedStrategy()
Rate Limiting Prevent abuse and API overuse enable_rate_limiting=True
Input Validation Pydantic validation on arguments Use ValidatedTool
Error Containment Failures don't crash the processor Built-in exception handling
Retry Limits Prevent infinite retry loops max_retries=3

Important Security Notes:

  • Environment Variables: Subprocess strategy inherits the parent process environment by default. For stricter isolation, use container-level controls (Docker, cgroups).
  • Network Access: Tools inherit network access from the host. For network isolation, use OS-level sandboxing (containers, network namespaces, firewalls).
  • Resource Limits: For hard CPU/memory caps, use OS-level controls (cgroups on Linux, Job Objects on Windows, or Docker resource limits).
  • Secrets: Never injected automatically. Pass secrets explicitly via tool arguments or environment variables, and prefer scoped env vars for subprocess tools to minimize exposure.

OS-Level Hardening

For production deployments, add these hardening measures:

Concern Docker/Container Solution Direct Example
CPU/RAM caps --cpus, --memory flags docker run --cpus="1.5" --memory="512m" myapp
Network egress Deny-by-default with firewall rules --network=none or custom network with egress filtering
Filesystem Read-only root + writable scratch --read-only --tmpfs /tmp:rw,size=100m

Example: Run processor in locked-down container

# Dockerfile
FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt --no-cache-dir
COPY . .
USER nobody  # Run as non-root
CMD ["python", "app.py"]

# Run with resource limits and network restrictions
docker run \
  --cpus="2" \
  --memory="1g" \
  --memory-swap="1g" \
  --read-only \
  --tmpfs /tmp:rw,size=200m,mode=1777 \
  --network=custom-net \
  --cap-drop=ALL \
  myapp:latest

Network egress controls (deny-by-default)

# Create restricted network with no internet access (for local-only tools)
docker network create --internal restricted-net

# Or use iptables for per-tool CIDR allowlists
iptables -A OUTPUT -d 10.0.0.0/8 -j ACCEPT   # Allow private ranges
iptables -A OUTPUT -d 172.16.0.0/12 -j ACCEPT
iptables -A OUTPUT -d 192.168.0.0/16 -j ACCEPT
iptables -A OUTPUT -j DROP  # Deny everything else

Example security-focused setup for untrusted code:

import asyncio
from chuk_tool_processor import ToolProcessor, IsolatedStrategy, get_default_registry

async def create_secure_processor():
    # Maximum isolation for untrusted code
    # Runs each tool in a separate process
    registry = await get_default_registry()

    processor = ToolProcessor(
        strategy=IsolatedStrategy(
            registry=registry,
            max_workers=4,
            default_timeout=10.0
        ),
        default_timeout=10.0,
        enable_rate_limiting=True,
        global_rate_limit=50,  # 50 requests/minute
        max_retries=2
    )
    return processor

# For even stricter isolation:
# - Run the entire processor inside a Docker container with resource limits
# - Use network policies to restrict outbound connections
# - Use read-only filesystems where possible

Design Goals & Non-Goals

What CHUK Tool Processor does:

  • ✅ Parse tool calls from any LLM format (XML, OpenAI, JSON)
  • ✅ Execute tools with production policies (timeouts, retries, rate limits, caching)
  • ✅ Isolate untrusted code in subprocesses
  • ✅ Connect to remote tool servers via MCP (HTTP/STDIO/SSE)
  • ✅ Provide composable execution layers (strategies + wrappers)
  • ✅ Export tool schemas for LLM prompting

What CHUK Tool Processor explicitly does NOT do:

  • ❌ Manage conversations or chat history
  • ❌ Provide prompt engineering or prompt templates
  • ❌ Bundle an LLM client (bring your own OpenAI/Anthropic/local)
  • ❌ Implement agent frameworks or chains
  • ❌ Make decisions about which tools to call

Why this matters: CHUK Tool Processor stays focused on reliable tool execution. It's a building block, not a framework. This makes it composable with any LLM application architecture.

Architecture Principles

  1. Composability: Stack strategies and wrappers like middleware
  2. Async-First: Built for async/await from the ground up
  3. Production-Ready: Timeouts, retries, caching, rate limiting—all built-in
  4. Pluggable: Parsers, strategies, transports—swap components as needed
  5. Observable: Structured logging and metrics collection throughout

Examples

Check out the examples/ directory for complete working examples:

Getting Started

  • 60-second hello: examples/01_getting_started/hello_tool.py - Absolute minimal example (copy-paste-run)
  • Quick start: examples/01_getting_started/quickstart_demo.py - Basic tool registration and execution
  • Execution strategies: examples/01_getting_started/execution_strategies_demo.py - InProcess vs Subprocess
  • Production wrappers: examples/02_production_features/wrappers_demo.py - Caching, retries, rate limiting
  • Streaming tools: examples/03_streaming/streaming_demo.py - Real-time incremental results
  • Streaming tool calls: examples/03_streaming/streaming_tool_calls_demo.py - Handle partial tool calls from streaming LLMs
  • Schema helper: examples/05_schema_and_types/schema_helper_demo.py - Auto-generate schemas from typed tools (Pydantic → OpenAI/Anthropic/MCP)
  • Observability: examples/02_production_features/observability_demo.py - OpenTelemetry + Prometheus integration

MCP Integration (Real-World)

  • Notion + OAuth: examples/04_mcp_integration/notion_oauth.py - Complete OAuth 2.1 flow with HTTP Streamable
    • Shows: Authorization Server discovery, client registration, PKCE flow, token exchange
  • SQLite Local: examples/04_mcp_integration/stdio_sqlite.py - Local database access via STDIO
    • Shows: Command/args passing, environment variables, file paths, initialization timeouts
  • Echo Server: examples/04_mcp_integration/stdio_echo.py - Minimal STDIO transport example
    • Shows: Simplest possible MCP integration for testing
  • Atlassian + OAuth: examples/04_mcp_integration/atlassian_sse.py - OAuth with SSE transport (legacy)

Advanced MCP

  • Plugin system: examples/06_plugins/plugins_builtins_demo.py, examples/06_plugins/plugins_custom_parser_demo.py

FAQ

Q: What happens if a tool takes too long? A: The tool is cancelled after default_timeout seconds and returns an error result. The processor continues with other tools.

Q: Can I mix local and remote (MCP) tools? A: Yes! Register local tools first, then use setup_mcp_* to add remote tools. They all work in the same processor.

Q: How do I handle malformed LLM outputs? A: The processor is resilient—invalid tool calls are logged and return error results without crashing.

Q: What about API rate limits? A: Use enable_rate_limiting=True and set tool_rate_limits per tool or global_rate_limit for all tools.

Q: Can tools return files or binary data? A: Yes—tools can return any JSON-serializable data including base64-encoded files, URLs, or structured data.

Q: How do I test my tools? A: Use pytest with @pytest.mark.asyncio. See Testing Tools for examples.

Q: Does this work with streaming LLM responses? A: Yes—as tool calls appear in the stream, extract and process them. The processor handles partial/incremental tool call lists.

Q: What's the difference between InProcess and Isolated strategies? A: InProcess is faster (same process), Isolated is safer (separate subprocess). Use InProcess for trusted code, Isolated for untrusted.

Comparison with Other Tools

Feature chuk-tool-processor LangChain Tools OpenAI Tools MCP SDK
Async-native ⚠️ Partial
Process isolation ✅ IsolatedStrategy ⚠️
Built-in retries ❌ †
Rate limiting ❌ † ⚠️
Caching ⚠️ ❌ ‡
Idempotency & de-dup ✅ SHA256 keys
Per-tool policies ✅ (timeouts/retries/limits) ⚠️
Multiple parsers ✅ (XML, OpenAI, JSON) ⚠️
Streaming tools ⚠️ ⚠️
MCP integration ✅ All transports ✅ (protocol only)
Zero-config start ⚠️
Production-ready ✅ Timeouts, metrics ⚠️ ⚠️ ⚠️

Notes:

  • † LangChain offers caching and rate-limiting through separate libraries (langchain-cache, external rate limiters), but they're not core features.
  • ‡ OpenAI Tools can be combined with external rate limiters and caches, but tool execution itself doesn't include these features.

When to use chuk-tool-processor:

  • You need production-ready tool execution (timeouts, retries, caching)
  • You want to connect to MCP servers (local or remote)
  • You need to run untrusted code safely (subprocess isolation)
  • You're building a custom LLM application (not using a framework)

When to use alternatives:

  • LangChain: You want a full-featured LLM framework with chains, agents, and memory
  • OpenAI Tools: You only use OpenAI and don't need advanced execution features
  • MCP SDK: You're building an MCP server, not a client

Related Projects

  • chuk-mcp: Low-level Model Context Protocol client
    • Powers the MCP transport layer in chuk-tool-processor
    • Use directly if you need protocol-level control
    • Use chuk-tool-processor if you want high-level tool execution

Development & Publishing

For Contributors

Development setup:

# Clone repository
git clone https://github.com/chrishayuk/chuk-tool-processor.git
cd chuk-tool-processor

# Install development dependencies
uv sync --dev

# Run tests
make test

# Run all quality checks
make check

For Maintainers: Publishing Releases

The project uses fully automated CI/CD for releases. Publishing is as simple as:

# 1. Bump version
make bump-patch    # or bump-minor, bump-major

# 2. Commit version change
git add pyproject.toml
git commit -m "version X.Y.Z"
git push

# 3. Create release (automated)
make publish

This will:

  • Create and push a git tag
  • Trigger GitHub Actions to create a release with auto-generated changelog
  • Run tests across all platforms and Python versions
  • Build and publish to PyPI automatically

For detailed release documentation, see:

Stability & Versioning

CHUK Tool Processor follows Semantic Versioning 2.0.0 for predictable upgrades:

  • Breaking changes = major version bump (e.g., 1.x → 2.0)
  • New features (backward-compatible) = minor version bump (e.g., 1.2 → 1.3)
  • Bug fixes (backward-compatible) = patch version bump (e.g., 1.2.3 → 1.2.4)

Public API surface: Everything exported via the package root (from chuk_tool_processor import ...) is considered public API and follows semver guarantees.

Deprecation policy: Deprecated APIs will:

  1. Log a warning for one minor release
  2. Be removed in the next major release

Upgrading safely:

  • Patch and minor updates are safe to deploy without code changes
  • Major updates may require migration—see release notes
  • Pin to chuk-tool-processor~=1.2 for minor updates only, or chuk-tool-processor==1.2.3 for exact versions

Contributing & Support


Remember: CHUK Tool Processor is the missing link between LLM outputs and reliable tool execution. It's not trying to be everything—it's trying to be the best at one thing: processing tool calls in production.

Built with ❤️ by the CHUK AI team for the LLM tool integration community.