/High-Rank_RGB-Event_Tracker

Code of ICCV 2023 paper Cross-modal Orthogonal High-rank Augmentation for RGB-Event Transformer-trackers

Primary LanguagePythonMIT LicenseMIT

Issues MIT License


Logo

Cross-modal Orthogonal High-rank Augmentation for RGB-Event Transformer-trackers

[ICCV 2023]

Paper · Report Bug · Request Feature


Logo Logo Logo
Demos
Table of Contents
  1. Getting Started
  2. License
  3. Contact
  4. Acknowledgments

Getting Started

Prerequisites

  1. clone the project

    git clone https://github.com/ZHU-Zhiyu/High-Rank_RGB-Event_Tracker.git
  2. FE108    * Download data from FE108    * Transfer and clip data into h5py format

    python ./FE108/Evt_convert.py

    The directory should have the below format:

    Format of FE108 (click to expand)
    ├── FE108 dataset (108 sequences)
        ├── airplane 
            ├── inter3_stack
                ├── 0001_1.jpg
                ├── 0001_2.jpg
                ├── 0001_3.jpg
                ├── 0002_1.jpg
                ├── ...
            ├── img
                ├── 0001.jpg
                ├── 0002.jpg
                ├── ...
            ├── events.aedat4
            ├── groundtruth_rect.txt
        ├── airplane_motion
            ├── ... 
        ├── ... 
        ├── Event file(108 sequences)
            ├── airplane.h5
            ├── airplane_motion.h5
            ├── ... 
    
  3. COESOT    * Download data from COESOT    * Transfer and clip data into mat files

    python ./COESOT/data.py

    The directory should have the below format:

    Format of COESOT (click to expand)
    ├── COESOT dataset
        ├── Training Subset (827 sequences)
            ├── dvSave-2021_09_01_06_59_10
                ├── dvSave-2021_09_01_06_59_10.aedat4
                ├── groundtruth.txt
                ├── absent.txt
                ├── start_end_index.txt
            ├── ... 
        ├── trainning voxel (827 sequences)
            ├── dvSave-2022_03_21_09_05_49
              ├── dvSave-2022_03_21_09_05_49_voxel
                ├── frame0000.mat
                ├── frame0001.mat
                ├── ... 
            ├── ... 
        ├── Testing Subset (528 sequences)
            ├── dvSave-2021_07_30_11_04_12
                ├── dvSave-2021_07_30_11_04_12_aps
                ├── dvSave-2021_07_30_11_04_12_dvs
                ├── dvSave-2021_07_30_11_04_12.aedat4
                ├── groundtruth.txt
                ├── absent.txt
                ├── start_end_index.txt
            ├── ... 
        ├── testing voxel (528 sequences)
            ├── dvSave-2022_03_21_11_12_27
              ├── dvSave-2022_03_21_11_12_27_voxel
                ├── frame0000.mat
                ├── frame0001.mat
                ├── ... 
            ├── ... 

Installation

  1. One stream tracker: MonTrack

    conda create -n montrack python==3.8
    conda activate montrack
    cd ./MonTrack
    conda install --yes --file requirements.txt

    Then install KNN_CUDA

  2. Two-streams tracker: CEUTrack

    conda create -n CEUTrack python==3.8
    conda activate CEUTrack
    cd ./CEUTrack
    sh install.sh

Training

  1. One stream tracker: MonTrack download SwinV2 Tiny/Base and put them into

    ./ltr/checkpoint

    Then run the following code

    cd ./MonTrack/ltr
    sh train.sh
  2. Two-streams tracker: CEUTrack

    cd CEUTrack
    sh train.sh

Evaluation


Logo            Logo

Logo
  1. One stream tracker: MonTrack

    sh eval.sh

    Then install KNN_CUDA

  2. Two-streams tracker: CEUTrack

    sh eval.sh

Roadmap

  • Update ReadMe
  • Upload Code
  • Testing Code ......

(back to top)

License

Distributed under the MIT License. See LICENSE.txt for more information.

(back to top)

Contact

Email - Zhu Zhiyu

Homepage: Page / Scholar

(back to top)

Acknowledgments

Thanks to FE108 and COESOT datasets.

If you find the project is interesting, please cite

@article{zhu2023cross,
title={Cross-modal Orthogonal High-rank Augmentation for RGB-Event Transformer-trackers},
author={Zhu, Zhiyu and Hou, Junhui and Wu, Dapeng Oliver},
journal={International Conference on Computer Vision},
year={2023}
}
@article{zhu2022learning,
title={Learning Graph-embedded Key-event Back-tracing for Object Tracking in Event Clouds},
author={Zhu, Zhiyu and Hou, Junhui and Lyu, Xianqiang},
journal={Advances in Neural Information Processing Systems},
volume={35},
pages={7462--7476},
year={2022}
}

Template from othneildrew.

(back to top)