-
code for testing
- 'sigma_estimation.py'
: estimate a noise sigma of the noisy image - 'test_fc_aide_sup.py'
: denoise a noisy image using the supervised model trained on the specific noise level - 'test_fc_aide_ft.py'
: denoise a noisy image using the supervised model + fine-tuning - 'test_fc_aide_blind_sup.py'
: denoise a noisy image using the supervised model trained on various noise level - 'test_fc_aide_blind_ft.py'
: denoise a noisy image using the supervised model + fine-tuning - 'test_fc_aide_blind_estimated_sigma_ft.py'
: estimate a sigma of the noise level and then denoise using the supervised model + fine-tuning
- 'sigma_estimation.py'
-
weights
- 'sigmaX.hdf5' : a weight trained on a specific noise level([15, 25, 30, 50, 75])
- 'blind.hdf5' : the weight trained on various noise levels([0,50])
-
test images
- 'Set13'
- 'BSD68'
- 'Medical60'
The average PSNR(dB) on Set13.
Sigma | BM3D | RED | MemNet | DnCNN-S | DnCNN-B | FC-AIDE_S | FC-AIDE_S+FT | FC-AIDE_B | FC-AIDE_B+FT |
---|---|---|---|---|---|---|---|---|---|
15 | 31.98 | - | - | 32.21 | 31.58 | 32.08 | 32.59 | 31.72 | 32.52 |
25 | 29.44 | - | - | 29.63 | 29.22 | 29.57 | 30.14 | 29.34 | 30.03 |
30 | 28.56 | 28.91 | 28.83 | 28.64 | 28.41 | 28.73 | 29.28 | 28.50 | 29.19 |
50 | 26.05 | 26.28 | 26.39 | 26.09 | 26.07 | 26.24 | 26.87 | 26.05 | 26.77 |
75 | 24.16 | - | - | 24.03 | 18.33 | 24.24 | 24.97 | 21.07 | 24.89 |
The average PSNR(dB) on BSD68.
Sigma | BM3D | RED | MemNet | DnCNN-S | DnCNN-B | FC-AIDE_S | FC-AIDE_S+FT | FC-AIDE_B | FC-AIDE_B+FT |
---|---|---|---|---|---|---|---|---|---|
15 | 31.07 | - | - | 31.72 | 31.60 | 31.63 | 31.75 | 31.47 | 31.72 |
25 | 28.56 | - | - | 29.22 | 29.15 | 29.18 | 29.31 | 29.04 | 29.26 |
30 | 27.74 | 28.45 | 28.42 | 28.35 | 28.34 | 28.35 | 28.49 | 28.24 | 28.44 |
50 | 25.60 | 26.29 | 26.34 | 26.21 | 26.20 | 26.24 | 26.38 | 26.12 | 26.33 |
75 | 24.19 | - | - | 24.62 | 18.68 | 24.74 | 24.87 | 21.42 | 24.76 |
- Python 2.7 / Python 3.6
- CUDA v8.0 / CuDNN v5.1
- Tensorflow v1.2.1
- Keras v2.0.8
@ARTICLE{2018arXiv180707569C,
author = {{Cha}, S. and {Moon}, T.}a,
title = "{Fully Convolutional Pixel Adaptive Image Denoiser}",
journal = {ArXiv e-prints},
archivePrefix = "arXiv",
eprint = {1807.07569},
primaryClass = "cs.CV",
keywords = {Computer Science - Computer Vision and Pattern Recognition, Computer Science - Machine Learning, Statistics - Machine Learning},
year = 2018,
month = jul,
adsurl = {http://adsabs.harvard.edu/abs/2018arXiv180707569C},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}