ValueError: numpy.nanargmax raises on a.size==0 and axis=None; So Bottleneck too.
Opened this issue · 2 comments
samwisehawkins commented
Any attempt to call fit() raises an error ValueError: numpy.nanargmax raises on a.size==0 and axis=None; So Bottleneck too.
import numpy as np
import mifs
X = np.random.random(size=100).reshape((25,4))*100
y = np.random.random(size=25)*100
print(X.shape, y.shape)
sel = mifs.MutualInformationFeatureSelector(method='JMI', categorical=False)
sel.fit(X, y)
(25, 4) (25,)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-87-47bba24c3c23> in <module>()
7 print(X.shape, y.shape)
8 sel = mifs.MutualInformationFeatureSelector(method='JMI', categorical=False)
----> 9 sel.fit(X, y)
c:\users\a7slha\code\mifs\mifs\mifs.py in fit(self, X, y)
147 self.n_jobs = NUM_CORES - self.n_jobs
148
--> 149 return self._fit(X, y)
150
151
c:\users\a7slha\code\mifs\mifs\mifs.py in _fit(self, X, y)
242 fmm = feature_mi_matrix[:len(S), F]
243 if self.method == 'JMI':
--> 244 selected = F[bn.nanargmax(bn.nansum(fmm, axis=0))]
245 elif self.method == 'JMIM':
246 if bn.allnan(bn.nanmin(fmm, axis = 0)):
ValueError: numpy.nanargmax raises on a.size==0 and axis=None; So Bottleneck too.
samwisehawkins commented
OK, I realise this is because I did not specify n_features
,. But perhaps this should be raised earlier and less cryptically?
qnoirhomme commented
I had a similar error. It is because when I do not specify the number of features I want to keep n_features
is set to np.inf
at line 233 in mifs.py, and n_features
is used to stop the main loop. Therefore, it crashes after selecting the latest possible feature.
This could be corrected by changing line 233?
if self.n_features == 'auto': n_features = p