/dpq2

This is yet another attempt to create a good interface to PostgreSQL for the D programming language.

Primary LanguageDBoost Software License 1.0BSL-1.0

dpq2

Build Status Coverage Status codecov.io

This is yet another attempt to create a good interface to PostgreSQL for the D programming language.

It adds only tiny overhead to the original low level library libpq but make convenient use PostgreSQL from D.

API documentation

Please help us to make documentation better!

Features

  • Text string arguments support
  • Binary arguments support (including multi-dimensional arrays)
  • Both text and binary formats of query result support
  • Immutable query result for simplify multithreading
  • Async queries support
  • Reading of the text query results to native D text types
  • Representation of binary arguments and binary query results as native D types
  • Text types
  • Integer and decimal types
  • Money type (into money.currency, https://github.com/qznc/d-money)
  • Some data and time types
  • JSON type (stored into vibe.data.json.Json)
  • JSONB type (ditto)
  • Geometric types
  • Conversion of values to BSON (into vibe.data.bson.Bson)
  • Access to PostgreSQL's multidimensional arrays
  • LISTEN/NOTIFY support
  • Bulk data upload to table from string data (SQL COPY)
  • Simple SQL query builder

Building

Bindings for libpq can be static or dynamic.

The static bindings are generated by default. Add --config=dynamic to the dub parameters to generate dynamic bindings.

Example

#!/usr/bin/env rdmd

import dpq2;
import std.getopt;
import std.stdio: writeln;
import std.typecons: Nullable;
import vibe.data.bson;

void main(string[] args)
{
    string connInfo;
    getopt(args, "conninfo", &connInfo);

    Connection conn = new Connection(connInfo);

    // Only text query result can be obtained by this call:
    auto answer = conn.exec(
        "SELECT now()::timestamp as current_time, 'abc'::text as field_name, "~
        "123 as field_3, 456.78 as field_4, '{\"JSON field name\": 123.456}'::json"
        );

    writeln( "Text query result by name: ", answer[0]["current_time"].as!PGtext );
    writeln( "Text query result by index: ", answer[0][3].as!PGtext );

    // It is possible to read values of unknown type using BSON:
    auto firstRow = answer[0];
    foreach(cell; rangify(firstRow))
    {
        writeln("bson: ", cell.as!Bson);
    }

    // Binary arguments query with binary result:
    QueryParams p;
    p.sqlCommand = "SELECT "~
        "$1::double precision as double_field, "~
        "$2::text, "~
        "$3::text as null_field, "~
        "array['first', 'second', NULL]::text[] as array_field, "~
        "$4::integer[] as multi_array, "~
        "'{\"float_value\": 123.456,\"text_str\": \"text string\"}'::json as json_value";

    p.argsVariadic(
        -1234.56789012345,
        "first line\nsecond line",
        Nullable!string.init,
        [[1, 2, 3], [4, 5, 6]]
    );

    auto r = conn.execParams(p);
    scope(exit) destroy(r);

    writeln( "0: ", r[0]["double_field"].as!PGdouble_precision );
    writeln( "1: ", r[0][1].as!PGtext );
    writeln( "2.1 isNull: ", r[0][2].isNull );
    writeln( "2.2 isNULL: ", r[0].isNULL(2) );
    writeln( "3.1: ", r[0][3].asArray[0].as!PGtext );
    writeln( "3.2: ", r[0][3].asArray[1].as!PGtext );
    writeln( "3.3: ", r[0]["array_field"].asArray[2].isNull );
    writeln( "3.4: ", r[0]["array_field"].asArray.isNULL(2) );
    writeln( "4.1: ", r[0]["multi_array"].asArray.getValue(1, 2).as!PGinteger );
    writeln( "4.2: ", r[0]["multi_array"].as!(int[][]) );
    writeln( "5.1 Json: ", r[0]["json_value"].as!Json);
    writeln( "5.2 Bson: ", r[0]["json_value"].as!Bson);

    // It is possible to read values of unknown type using BSON:
    for(auto column = 0; column < r.columnCount; column++)
    {
        writeln("column name: '"~r.columnName(column)~"', bson: ", r[0][column].as!Bson);
    }

    // It is possible to upload CSV data ultra-fast:
    conn.exec("CREATE TEMP TABLE test_dpq2_copy (v1 TEXT, v2 INT)");

    // Init the COPY command. This sets the connection in a COPY receive
    // mode until putCopyEnd() is called. Copy CSV data, because it's standard,
    // ultra fast, and readable:
    conn.exec("COPY test_dpq2_copy FROM STDIN WITH (FORMAT csv)");

    // Write 2 lines of CSV, including text that contains the delimiter.
    // Postgresql handles it well:
    string data = "\"This, right here, is a test\",8\nWow! it works,13\n";
    conn.putCopyData(data);

    // Write 2 more lines
    data = "Horray!,3456\nSuper fast!,325\n";
    conn.putCopyData(data);

    // Signal that the COPY is finished. Let Postgresql finalize the command
    // and return any errors with the data.
    conn.putCopyEnd();
}

Compile and run:

Running ./dpq2_example --conninfo=user=postgres
2018-12-09T10:08:07.862:package.d:__lambda1:19 DerelictPQ loading...
2018-12-09T10:08:07.863:package.d:__lambda1:26 ...DerelictPQ loading finished
Text query result by name: 2018-12-09 10:08:07.868141
Text query result by index: 456.78
bson: "2018-12-09 10:08:07.868141"
bson: "abc"
bson: "123"
bson: "456.78"
bson: {"JSON field name":123.456}
0: -1234.57
1: first line
second line
2.1 isNull: true
2.2 isNULL: true
3.1: first
3.2: second
3.3: true
3.4: true
4.1: 6
4.2: [[1, 2, 3], [4, 5, 6]]
5.1 Json: {"text_str":"text string","float_value":123.456}
5.2 Bson: {"text_str":"text string","float_value":123.456}
column name: 'double_field', bson: -1234.56789012345
column name: 'text', bson: "first line\nsecond line"
column name: 'null_field', bson: null
column name: 'array_field', bson: ["first","second",null]
column name: 'multi_array', bson: [[1,2,3],[4,5,6]]
column name: 'json_value', bson: {"text_str":"text string","float_value":123.456}