Evaluate EncoderDecoderModels
Bachstelze opened this issue · 0 comments
There are few errors occurring.
With instructionBERT:
python main.py drop --model_name seq_to_seq --model_path Bachstelze/instructionBERT
Traceback (most recent call last):
File "main.py", line 98, in
Fire(main)
File "/home/hilsenbek/.conda/envs/instruct-eval/lib/python3.8/site-packages/fire/core.py", line 141, in Fire
component_trace = _Fire(component, args, parsed_flag_args, context, name)
File "/home/hilsenbek/.conda/envs/instruct-eval/lib/python3.8/site-packages/fire/core.py", line 475, in _Fire
component, remaining_args = _CallAndUpdateTrace(
File "/home/hilsenbek/.conda/envs/instruct-eval/lib/python3.8/site-packages/fire/core.py", line 691, in _CallAndUpdateTrace
component = fn(*varargs, **kwargs)
File "main.py", line 30, in main
score = task_fn(**kwargs)
File "/home/hilsenbek/workspace/instruct-eval/mmlu.py", line 197, in main
cors, acc, probs = evaluate(args, subject, model, dev_df, test_df)
File "/home/hilsenbek/workspace/instruct-eval/mmlu.py", line 153, in evaluate
pred = model.run(prompt)
File "/home/hilsenbek/workspace/instruct-eval/modeling.py", line 158, in run
outputs = self.model.generate(
File "/home/hilsenbek/.conda/envs/instruct-eval/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/home/hilsenbek/.conda/envs/instruct-eval/lib/python3.8/site-packages/transformers/generation/utils.py", line 1267, in generate
self._validate_model_kwargs(model_kwargs.copy())
File "/home/hilsenbek/.conda/envs/instruct-eval/lib/python3.8/site-packages/transformers/generation/utils.py", line 1140, in _validate_model_kwargs
raise ValueError(
ValueError: The followingmodel_kwargs
are not used by the model: ['token_type_ids'] (note: typos in the generate arguments will also show up in this list)
With instructionRoBERTa for big bench hard and DROP:
python main.py bbh --model_name seq_to_seq --model_path Bachstelze/instructionRoberta-base
python main.py drop --model_name seq_to_seq --model_path Bachstelze/instructionRoberta-base
Traceback (most recent call last):
File "main.py", line 98, in
Fire(main)
File "/home/hilsenbek/.conda/envs/instruct-eval/lib/python3.8/site-packages/fire/core.py", line 141, in Fire
component_trace = _Fire(component, args, parsed_flag_args, context, name)
File "/home/hilsenbek/.conda/envs/instruct-eval/lib/python3.8/site-packages/fire/core.py", line 475, in _Fire
component, remaining_args = _CallAndUpdateTrace(
File "/home/hilsenbek/.conda/envs/instruct-eval/lib/python3.8/site-packages/fire/core.py", line 691, in _CallAndUpdateTrace
component = fn(*varargs, **kwargs)
File "main.py", line 30, in main
score = task_fn(**kwargs)
File "/home/hilsenbek/workspace/instruct-eval/bbh.py", line 82, in main
data = BBHData.load_from_huggingface(config=name)
File "/home/hilsenbek/workspace/instruct-eval/bbh.py", line 35, in load_from_huggingface
data = load_dataset(path, config, split=split)
File "/home/hilsenbek/.conda/envs/instruct-eval/lib/python3.8/site-packages/datasets/load.py", line 1794, in load_dataset
ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory)
File "/home/hilsenbek/.conda/envs/instruct-eval/lib/python3.8/site-packages/datasets/builder.py", line 1089, in as_dataset
raise NotImplementedError(f"Loading a dataset cached in a {type(self._fs).name} is not supported.")
NotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported.
for MMLU:
python main.py mmlu --model_name seq_to_seq --model_path Bachstelze/instructionRoberta-base
Traceback (most recent call last):
File "main.py", line 98, in
Fire(main)
File "/home/hilsenbek/.conda/envs/instruct-eval/lib/python3.8/site-packages/fire/core.py", line 141, in Fire
component_trace = _Fire(component, args, parsed_flag_args, context, name)
File "/home/hilsenbek/.conda/envs/instruct-eval/lib/python3.8/site-packages/fire/core.py", line 475, in _Fire
component, remaining_args = _CallAndUpdateTrace(
File "/home/hilsenbek/.conda/envs/instruct-eval/lib/python3.8/site-packages/fire/core.py", line 691, in _CallAndUpdateTrace
component = fn(*varargs, **kwargs)
File "main.py", line 30, in main
score = task_fn(**kwargs)
File "/home/hilsenbek/workspace/instruct-eval/mmlu.py", line 197, in main
cors, acc, probs = evaluate(args, subject, model, dev_df, test_df)
File "/home/hilsenbek/workspace/instruct-eval/mmlu.py", line 153, in evaluate
pred = model.run(prompt)
File "/home/hilsenbek/workspace/instruct-eval/modeling.py", line 158, in run
outputs = self.model.generate(
File "/home/hilsenbek/.conda/envs/instruct-eval/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/home/hilsenbek/.conda/envs/instruct-eval/lib/python3.8/site-packages/transformers/generation/utils.py", line 1322, in generate
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
File "/home/hilsenbek/.conda/envs/instruct-eval/lib/python3.8/site-packages/transformers/generation/utils.py", line 638, in _prepare_encoder_decoder_kwargs_for_generation
model_kwargs["encoder_outputs"]: ModelOutput = encoder(**encoder_kwargs)
File "/home/hilsenbek/.conda/envs/instruct-eval/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/home/hilsenbek/.conda/envs/instruct-eval/lib/python3.8/site-packages/transformers/models/roberta/modeling_roberta.py", line 818, in forward
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
RuntimeError: The expanded size of the tensor (583) must match the existing size (514) at non-singleton dimension 1. Target sizes: [1, 583]. Tensor sizes: [1, 514]