dwofk/fast-depth

Could you provide the training script ?

Opened this issue · 3 comments

I want to train a model on kitti dataset, could you provide a training script? Thanks!

It would be useful also for me

useful also for me

For those who have same question, I attached the training script I used for conveinence.
I referred https://github.com/fangchangma/sparse-to-dense.pytorch from #60

def main():
   ... 
   _existing codes_
   ...
   
   if args.train:
        if args.data == 'nyudepthv2':
            from dataloaders.nyu import NYUDataset
            train_dataset = NYUDataset(traindir, split='train', modality=args.modality)
        else:
            raise RuntimeError('Dataset not found.')
       
        if args.criterion == 'l2':
            criterion = MaskedMSELoss().cuda()
        elif args.criterion == 'l1':
            criterion = MaskedL1Loss().cuda()

        # set batch size to be 1 for validation
        train_loader = torch.utils.data.DataLoader(train_dataset,
            batch_size=args.batch_size, shuffle=True, num_workers=args.workers)
        print("=> Train data loaders created.")
        model = models.MobileNetSkipAdd(output_size=(1, 224, 224, 1), pretrained=args.pretrained)
        model = model.cuda()
        
        start_epoch = 0
        optimizer = torch.optim.SGD(model.parameters(), args.lr, \
            momentum=args.momentum, weight_decay=args.weight_decay)
        
        # create results folder, if not already exists
        output_directory = utils.get_output_directory(args)
        if not os.path.exists(output_directory):
            os.makedirs(output_directory)
        train_csv = os.path.join(output_directory, 'train.csv')
        test_csv = os.path.join(output_directory, 'test.csv')
        best_txt = os.path.join(output_directory, 'best.txt')

        # create new csv files with only header
        if not args.resume:
            with open(train_csv, 'w') as csvfile:
                writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
                writer.writeheader()
            with open(test_csv, 'w') as csvfile:
                writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
                writer.writeheader()
        
        for epoch in range(start_epoch, args.epochs):
            utils.adjust_learning_rate(optimizer, epoch, args.lr)
            train(train_loader, model, criterion, optimizer, epoch) # train for one epoch
            result, img_merge = validate(val_loader, model, epoch) # evaluate on validation set

            # remember best rmse and save checkpoint
            is_best = result.rmse < best_result.rmse
            if is_best:
                best_result = result
                with open(best_txt, 'w') as txtfile:
                    txtfile.write("epoch={}\nmse={:.3f}\nrmse={:.3f}\nabsrel={:.3f}\nlg10={:.3f}\nmae={:.3f}\ndelta1={:.3f}\nt_gpu={:.4f}\n".
                        format(epoch, result.mse, result.rmse, result.absrel, result.lg10, result.mae, result.delta1, result.gpu_time))
                if img_merge is not None:
                    img_filename = output_directory + '/comparison_best.png'
                    utils.save_image(img_merge, img_filename)

            utils.save_checkpoint({
                'args': args,
                'epoch': epoch,
                'model': model,
                'best_result': best_result,
                'optimizer' : optimizer,
            }, is_best, epoch, output_directory)

def train(train_loader, model, criterion, optimizer, epoch):
    average_meter = AverageMeter()
    model.train() # switch to train mode
    end = time.time()
    for i, (input, target) in enumerate(train_loader):

        input, target = input.cuda(), target.cuda()
        torch.cuda.synchronize()
        data_time = time.time() - end

        # compute pred
        end = time.time()
        pred = model(input)

        loss = criterion(pred, target)
        optimizer.zero_grad()
        loss.backward() # compute gradient and do SGD step
        optimizer.step()
        torch.cuda.synchronize()
        gpu_time = time.time() - end

        # measure accuracy and record loss
        result = Result()
        result.evaluate(pred.data, target.data)
        average_meter.update(result, gpu_time, data_time, input.size(0))
        end = time.time()

        if (i + 1) % args.print_freq == 0:
            print('=> output: {}'.format(output_directory))
            print('Train Epoch: {0} [{1}/{2}]\t'
                  't_Data={data_time:.3f}({average.data_time:.3f}) '
                  't_GPU={gpu_time:.3f}({average.gpu_time:.3f})\n\t'
                  'RMSE={result.rmse:.2f}({average.rmse:.2f}) '
                  'MAE={result.mae:.2f}({average.mae:.2f}) '
                  'Delta1={result.delta1:.3f}({average.delta1:.3f}) '
                  'REL={result.absrel:.3f}({average.absrel:.3f}) '
                  'Lg10={result.lg10:.3f}({average.lg10:.3f}) '.format(
                  epoch, i+1, len(train_loader), data_time=data_time,
                  gpu_time=gpu_time, result=result, average=average_meter.average()))

    avg = average_meter.average()
    with open(train_csv, 'a') as csvfile:
        writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
        writer.writerow({'mse': avg.mse, 'rmse': avg.rmse, 'absrel': avg.absrel, 'lg10': avg.lg10,
            'mae': avg.mae, 'delta1': avg.delta1, 'delta2': avg.delta2, 'delta3': avg.delta3,
            'gpu_time': avg.gpu_time, 'data_time': avg.data_time})