dylanaraps/pure-bash-bible

rgb2hsl - Something fun I wrote today

dylanaraps opened this issue · 3 comments

This is very likely not perfect but it seems to pass any RGB color I throw at it.

# rgb2hsl - usage: rgb2hsl r g b

rgb_to_hsl() {
    local r g b
    local h s l
    local min max

    # Ensure input is greater than 0.
    ((r=r < 0 ? 0 : ${1:-0}))
    ((g=g < 0 ? 0 : ${2:-0}))
    ((b=b < 0 ? 0 : ${3:-0}))

    # Ensure input is lesser than 255.
    ((r=r > 255 ? 255 : r))
    ((g=g > 255 ? 255 : g))
    ((b=b > 255 ? 255 : b))

    # Convert RGB value to a 0-100 range.
    #
    # This is usually a 0-1 range but we
    # multiply by 100 to "fake" floating
    # point.
    ((r=r * 100 / 255))
    ((g=g * 100 / 255))
    ((b=b * 100 / 255))

    # Give the min variable the maximum
    # possible value. We must set it to
    # something.
    ((min=255))

    # Find the minimum and maximum RGB
    # values for use below.
    ((min=r < min ? r : min))
    ((max=r > max ? r : max))
    ((min=g < min ? g : min))
    ((max=g > max ? g : max))
    ((min=b < min ? b : min))
    ((max=b > max ? b : max))

    # Calculate the luminace using the
    # above values.
    ((l=(min + max) / 2))

    # Calculate the saturation using a
    # different formula based on its
    # value.
    #
    # Again, we multiply the values by
    # 100 to "fake" floating points.
    ((s=min == max
        ? 0
        : l < 50
            ? (max - min) * 100 / (max + min)
            : (max - min) * 100 / (200 - max - min)
    ))

    # Calculate the hue based on which
    # RGB value is the maximum.
    ((h=s == 0 ? 0
        : r == max
            ? (g - b) * 100 / (max - min)
        : g == max
            ? 200 + (b - r) * 100 / (max - min)
        : b == max
            ? 400 + (r - g) * 100 / (max - min)
        : 0
    ))

    # Convert the calculation result into
    # degrees. Divide by 100 to reverse the
    # floating point hacks.
    ((h=h * 60 / 100))

    printf '%s\n' "$h $s $l"
}

rgb_to_hsl 18 233 45

Bonus!

The entire function inside an arithmetic block (( )). This really starts to look like another language entirely!

The coolest part:

-> time rgb2hsl
186 100 53
real    0m 0.00s
user    0m 0.00s
sys     0m 0.00s
rgb_to_hsl() ((
    r = r < 0 ? 0 : ${1:-0},
    g = g < 0 ? 0 : ${2:-0},
    b = b < 0 ? 0 : ${3:-0},

    r = r > 255 ? 255 : r,
    g = g > 255 ? 255 : g,
    b = b > 255 ? 255 : b,

    r = r * 100 / 255,
    g = g * 100 / 255,
    b = b * 100 / 255,

    min=255,

    min = r < min ? r : min,
    max = r > max ? r : max,
    min = g < min ? g : min,
    max = g > max ? g : max,
    min = b < min ? b : min,
    max = b > max ? b : max,

    mid = max - min,
    tot = max + min,

    l = tot / 2,

    s = min == max ? 0
        : l < 50
            ? mid * 100 / tot
            : mid * 100 / (200 - max - min),

    h = s == 0 ? 0
        : r == max
            ? (g - b) * 100 / mid
        : g == max
            ? 200 + (b - r) * 100 / mid
        : b == max
            ? 400 + (r - g) * 100 / mid
        : 0,

    h = h * 60 / 100
))

rgb_to_hsl 18 233 255
printf '%s\n' "$h $s $l"

It seems to be failing with "#944B53" (148, 75, 83).
Looks like this is due to g < b when r == max, since the calculation for h will give us a negative value in this scenario.

EDIT: This seems to work as far as I've tested

    # Calculate the hue based on which
    # RGB value is the maximum.
    ((h=s == 0 ? 0
        : r == max
            ? (g - b) * 100 / (max - min)
        : g == max
            ? 200 + (b - r) * 100 / (max - min)
        : b == max
            ? 400 + (r - g) * 100 / (max - min)
        : 0
    ))

    # If hue is negative, add 600.
    ((h=h < 0 ? 600 + h : h))

    # Convert the calculation result into
    # degrees. Divide by 100 to reverse the
    # floating point hacks.
    ((h=h * 60 / 100))