Custom dataset Linear Eval
letdivedeep opened this issue · 0 comments
letdivedeep commented
@MidoAssran and team great work !!!
I will like to use this for my custom dataset to build a linear classification model. I started the model on my custom dataset by modifying the config/pretrain/msn_vits16.yaml
criterion:
ent_weight: 0.0
final_sharpen: 0.25
me_max: true
memax_weight: 1.0
num_proto: 1024
start_sharpen: 0.25
temperature: 0.1
batch_size: 64
use_ent: true
use_sinkhorn: true
data:
color_jitter_strength: 0.5
pin_mem: true
num_workers: 10
image_folder: custom_db/
label_smoothing: 0.0
patch_drop: 0.15
rand_size: 224
focal_size: 96
rand_views: 1
focal_views: 10
root_path: dataset/
logging:
folder: saved_models/msn_os_logs/
write_tag: msn-experiment-1
meta:
bottleneck: 1
copy_data: false
drop_path_rate: 0.0
hidden_dim: 2048
load_checkpoint: false
model_name: deit_small
output_dim: 256
read_checkpoint: null
use_bn: true
use_fp16: false
use_pred_head: false
optimization:
clip_grad: 3.0
epochs: 350
final_lr: 1.0e-06
final_weight_decay: 0.4
lr: 0.001
start_lr: 0.0002
warmup: 15
weight_decay: 0.04
and start the model pre-training using this cmd
python main.py --fname configs/pretrain/msn_vits16.yaml --devices cuda:0
was able to start the model training as seen in the below screenshots
2) Downstream Task of Linear Classifier
confused on how to start the downstream task of image classification
Question :
- How to start the model training using a linear classifier on a custom dataset without distributed training?
- How to structure the dataset : dataset> custom_db > cls_id > images will this pattern work ?
Any help will be appreciated