facebookresearch/msn

Custom dataset Linear Eval

letdivedeep opened this issue · 0 comments

@MidoAssran and team great work !!!

I will like to use this for my custom dataset to build a linear classification model. I started the model on my custom dataset by modifying the config/pretrain/msn_vits16.yaml

criterion:
 ent_weight: 0.0
 final_sharpen: 0.25
 me_max: true
 memax_weight: 1.0
 num_proto: 1024
 start_sharpen: 0.25
 temperature: 0.1
 batch_size: 64
 use_ent: true
 use_sinkhorn: true
data:
 color_jitter_strength: 0.5
 pin_mem: true
 num_workers: 10
 image_folder: custom_db/
 label_smoothing: 0.0
 patch_drop: 0.15
 rand_size: 224
 focal_size: 96
 rand_views: 1
 focal_views: 10
 root_path: dataset/
logging:
 folder: saved_models/msn_os_logs/
 write_tag: msn-experiment-1
meta:
 bottleneck: 1
copy_data: false
 drop_path_rate: 0.0
 hidden_dim: 2048
 load_checkpoint: false
 model_name: deit_small
 output_dim: 256
 read_checkpoint: null
 use_bn: true
 use_fp16: false
 use_pred_head: false
optimization:
 clip_grad: 3.0
 epochs: 350
 final_lr: 1.0e-06
 final_weight_decay: 0.4
 lr: 0.001
 start_lr: 0.0002
 warmup: 15
 weight_decay: 0.04

and start the model pre-training using this cmd
python main.py --fname configs/pretrain/msn_vits16.yaml --devices cuda:0

was able to start the model training as seen in the below screenshots
pretrain_logs

2) Downstream Task of Linear Classifier

confused on how to start the downstream task of image classification
Question :

  • How to start the model training using a linear classifier on a custom dataset without distributed training?
  • How to structure the dataset : dataset> custom_db > cls_id > images will this pattern work ?

Any help will be appreciated