fangwei123456/spikingjelly

请问如果本身使用时序数据,假设数据维度为(B,C,T),还需要额外模拟一个时间T吗,然后在T循环吗?可否出一个时序数据的教程?非常感谢您的回复

Closed this issue · 4 comments

Read before creating a new issue

  • Users who want to use SpikingJelly should first be familiar with the usage of PyTorch.
  • If you do not know much about PyTorch, we recommend that the user can learn the basic tutorials of PyTorch.
  • Do not ask for help with the basic conception of PyTorch/Machine Learning but not related to SpikingJelly. For these questions, please refer to Google or PyTorch Forums.

For faster response

You can @ the corresponding developers for your issue. Here is the division:

Features Developers
Neurons and Surrogate Functions fangwei123456
Yanqi-Chen
CUDA Acceleration fangwei123456
Yanqi-Chen
Reinforcement Learning lucifer2859
ANN to SNN Conversion DingJianhao
Lyu6PosHao
Biological Learning (e.g., STDP) AllenYolk
Others Grasshlw
lucifer2859
AllenYolk
Lyu6PosHao
DingJianhao
Yanqi-Chen
fangwei123456

We are glad to add new developers who are volunteering to help solve issues to the above table.

Issue type

  • Bug Report
  • Feature Request
  • Help wanted
  • Other

SpikingJelly version

0.0.0.0.2

Description

...

Minimal code to reproduce the error/bug

import spikingjelly
# ...

按照您mnist的教程:
for t in range(args.T):
encoded_img = encoder(img) # 对输入图片进行编码
out_fr += net(encoded_img) # 计算网络输出的累加值
out_fr = out_fr / args.T # 计算平均输出
如果数据集为(B,C,T)是否应该先更换维度为(T,B,C),再循环T,最后对T维度做平均?

您好,经过仔细阅读您sj论文,问题已解决,感谢!

这个里面应该有一些相关的内容

https://spikingjelly.readthedocs.io/zh-cn/latest/activation_based/basic_concept.html

T放在最后一维会导致计算效率大幅度下降,在SJ框架里面是放到第0维的