We add permute and Reorg for YOLOv2.
Compile the caffe for offline-model
make clean
make pycaffe
make distribute
The following are additional descriptions and Copyrights about Caffe framework
Caffe
Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR)/The Berkeley Vision and Learning Center (BVLC) and community contributors.
Check out the project site for all the details like
- DIY Deep Learning for Vision with Caffe
- Tutorial Documentation
- BAIR reference models and the community model zoo
- Installation instructions
and step-by-step examples.
Custom distributions
- Intel Caffe (Optimized for CPU and support for multi-node), in particular Intel® Xeon processors.
- OpenCL Caffe e.g. for AMD or Intel devices.
- Windows Caffe
Community
Please join the caffe-users group or gitter chat to ask questions and talk about methods and models. Framework development discussions and thorough bug reports are collected on Issues.
Happy brewing!
License and Citation
Caffe is released under the BSD 2-Clause license. The BAIR/BVLC reference models are released for unrestricted use.
Please cite Caffe in your publications if it helps your research:
@article{jia2014caffe,
Author = {Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, Sergey and Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell, Trevor},
Journal = {arXiv preprint arXiv:1408.5093},
Title = {Caffe: Convolutional Architecture for Fast Feature Embedding},
Year = {2014}
}