gfx-rs/metal-rs

Kernel stops running when I click on another window.

jafioti opened this issue · 1 comments

Hi,
I'm working on writing matrix multiplication kernels and I have them running in a loop. I notice when I click off the window, or three finger swipe to another tab, each kernel run starts taking 0 ms. Why is this? Here's all the code needed to reproduce. I'm running it on a M1 Pro.

Edit: I've also noticed it just happen seemingly randomly as well. Haven't been able to charactarize it well.

Cargo.toml:

[dependencies]
metal = "0.26.0"
rand = "0.8.5"

Code:

use metal::{
    objc::rc::autoreleasepool, Buffer, BufferRef, CommandBuffer, CommandBufferRef, CommandQueue,
    CompileOptions, ComputePassDescriptor, ComputePassDescriptorRef, ComputePipelineDescriptor,
    ComputePipelineState, CounterSampleBuffer, CounterSampleBufferRef, Device,
    MTLCounterSamplingPoint, MTLResourceOptions, MTLSize, NSRange,
};
use rand::{rngs::StdRng, Rng, SeedableRng};

const NUM_SAMPLES: u64 = 2;

#[inline]
#[allow(clippy::too_many_arguments)]
fn run_naive(
    a_buffer: &Buffer,
    b_buffer: &Buffer,
    c_buffer: &Buffer,
    shader: &ComputePipelineState,
    dev: &Device,
    command_queue: &CommandQueue,
    counter_sample_buffer: &CounterSampleBufferRef,
    mat_size: usize,
) {
    let mut cpu_start = 0;
    let mut gpu_start = 0;
    dev.sample_timestamps(&mut cpu_start, &mut gpu_start);

    let destination_buffer = dev.new_buffer(
        (std::mem::size_of::<u64>() * NUM_SAMPLES as usize) as u64,
        MTLResourceOptions::StorageModeShared,
    );

    let counter_sampling_point = MTLCounterSamplingPoint::AtStageBoundary;
    assert!(dev.supports_counter_sampling(counter_sampling_point));

    let command_buffer = command_queue.new_command_buffer();

    let compute_pass_descriptor = ComputePassDescriptor::new();
    handle_compute_pass_sample_buffer_attachment(compute_pass_descriptor, counter_sample_buffer);

    let encoder = command_buffer.compute_command_encoder_with_descriptor(compute_pass_descriptor);

    encoder.set_compute_pipeline_state(shader);
    encoder.set_buffer(0, Some(a_buffer), 0);
    encoder.set_buffer(1, Some(b_buffer), 0);
    encoder.set_buffer(2, Some(c_buffer), 0);
    encoder.set_bytes(
        3,
        std::mem::size_of::<u32>() as u64,
        &(mat_size as u32) as *const u32 as *const _,
    );
    encoder.set_bytes(
        4,
        std::mem::size_of::<u32>() as u64,
        &(mat_size as u32) as *const u32 as *const _,
    );
    encoder.set_bytes(
        5,
        std::mem::size_of::<u32>() as u64,
        &(mat_size as u32) as *const u32 as *const _,
    );
    let thread_block_size = 32;
    encoder.set_threadgroup_memory_length(
        0,
        thread_block_size * thread_block_size * 2 * std::mem::size_of::<f32>() as u64,
    );
    encoder.dispatch_thread_groups(
        MTLSize {
            width: (mat_size as u64 + thread_block_size - 1) / thread_block_size,
            height: (mat_size as u64 + thread_block_size - 1) / thread_block_size,
            depth: 1,
        },
        MTLSize {
            width: thread_block_size,
            height: thread_block_size,
            depth: 1,
        },
    );
    encoder.end_encoding();
    resolve_samples_into_buffer(command_buffer, counter_sample_buffer, &destination_buffer);
    command_buffer.commit();
    command_buffer.wait_until_completed();
    let mut cpu_end = 0;
    let mut gpu_end = 0;
    dev.sample_timestamps(&mut cpu_end, &mut gpu_end);
    handle_timestamps(&destination_buffer, cpu_start, cpu_end, gpu_start, gpu_end);
}

fn main() {
    autoreleasepool(|| {
        let mat_size = 2048;
        let iters = 1000;
        let mut rng = StdRng::seed_from_u64(0);
        let a_data: Vec<f32> = (0..(mat_size * mat_size))
            .map(|_| rng.gen_range(-0.5..0.5))
            .collect();
        let b_data: Vec<f32> = (0..(mat_size * mat_size))
            .map(|_| rng.gen_range(-0.5..0.5))
            .collect();

        let shader = "#include <metal_stdlib>
            using namespace metal;

            kernel void matmul(
                device float *A [[buffer(0)]],
                device float *B [[buffer(1)]],
                device float *C [[buffer(2)]],
                device uint& M [[buffer(3)]],
                device uint& N [[buffer(4)]],
                device uint& K [[buffer(5)]],
                uint3 tid [[thread_position_in_grid]]
            ) {
                uint row = tid.y;
                uint column = tid.x;

                if(row < M && column < N) {
                    float value = 0.0f;
                    for(int i = 0; i < K; ++i) {
                        value = fma(A[row * K + i], B[i * N + column], value);
                    }
                    C[row * N + column] = value;
                }
            }
            ";
        let dev = Device::system_default().unwrap();
        let c_buffer = dev.new_buffer(
            (mat_size * std::mem::size_of::<f32>()) as u64,
            MTLResourceOptions::StorageModeManaged,
        );

        let a_buffer = dev.new_buffer_with_data(
            unsafe { std::mem::transmute(a_data.as_ptr()) },
            std::mem::size_of_val(&a_data) as u64,
            MTLResourceOptions::StorageModeManaged,
        );
        let b_buffer = dev.new_buffer_with_data(
            unsafe { std::mem::transmute(b_data.as_ptr()) },
            std::mem::size_of_val(&b_data) as u64,
            MTLResourceOptions::StorageModeManaged,
        );
        let counter_sample_buffer = create_counter_sample_buffer(&dev);
        let shader = compile_function("matmul", shader, &dev);
        let command_queue = dev.new_command_queue();
        for _ in 0..iters {
            run_naive(
                &a_buffer,
                &b_buffer,
                &c_buffer,
                &shader,
                &dev,
                &command_queue,
                &counter_sample_buffer,
                mat_size,
            );
        }
    })
}

fn compile_function(name: &str, code: &str, device: &Device) -> ComputePipelineState {
    let library = device
        .new_library_with_source(code, &CompileOptions::new())
        .unwrap();
    let pipeline_state_descriptor = ComputePipelineDescriptor::new();
    pipeline_state_descriptor
        .set_compute_function(Some(&library.get_function(name, None).unwrap()));
    device
        .new_compute_pipeline_state_with_function(
            pipeline_state_descriptor.compute_function().unwrap(),
        )
        .unwrap()
}

fn handle_compute_pass_sample_buffer_attachment(
    compute_pass_descriptor: &ComputePassDescriptorRef,
    counter_sample_buffer: &CounterSampleBufferRef,
) {
    let sample_buffer_attachment_descriptor = compute_pass_descriptor
        .sample_buffer_attachments()
        .object_at(0)
        .unwrap();

    sample_buffer_attachment_descriptor.set_sample_buffer(counter_sample_buffer);
    sample_buffer_attachment_descriptor.set_start_of_encoder_sample_index(0);
    sample_buffer_attachment_descriptor.set_end_of_encoder_sample_index(1);
}

fn resolve_samples_into_buffer(
    command_buffer: &CommandBufferRef,
    counter_sample_buffer: &CounterSampleBufferRef,
    destination_buffer: &BufferRef,
) {
    let blit_encoder = command_buffer.new_blit_command_encoder();
    blit_encoder.resolve_counters(
        counter_sample_buffer,
        NSRange::new(0_u64, NUM_SAMPLES),
        destination_buffer,
        0_u64,
    );
    blit_encoder.end_encoding();
}

fn handle_timestamps(
    resolved_sample_buffer: &BufferRef,
    cpu_start: u64,
    cpu_end: u64,
    gpu_start: u64,
    gpu_end: u64,
) {
    let samples = unsafe {
        std::slice::from_raw_parts(
            resolved_sample_buffer.contents() as *const u64,
            NUM_SAMPLES as usize,
        )
    };
    let pass_start = samples[0];
    let pass_end = samples[1];

    let cpu_time_span = cpu_end - cpu_start;
    let gpu_time_span = gpu_end - gpu_start;

    let millis = milliseconds_between_begin(pass_start, pass_end, gpu_time_span, cpu_time_span);
    println!("Compute pass duration: {millis} ms");
}

fn milliseconds_between_begin(begin: u64, end: u64, gpu_time_span: u64, cpu_time_span: u64) -> f64 {
    let time_span = (end as f64) - (begin as f64);
    let nanoseconds = time_span / (gpu_time_span as f64) * (cpu_time_span as f64);
    nanoseconds / 1_000_000.0
}

fn create_counter_sample_buffer(device: &Device) -> CounterSampleBuffer {
    let counter_sample_buffer_desc = metal::CounterSampleBufferDescriptor::new();
    counter_sample_buffer_desc.set_storage_mode(metal::MTLStorageMode::Shared);
    counter_sample_buffer_desc.set_sample_count(NUM_SAMPLES);
    let counter_sets = device.counter_sets();

    let timestamp_counter = counter_sets.iter().find(|cs| cs.name() == "timestamp");

    counter_sample_buffer_desc
        .set_counter_set(timestamp_counter.expect("No timestamp counter found"));

    device
        .new_counter_sample_buffer_with_descriptor(&counter_sample_buffer_desc)
        .unwrap()
}

I've also noticed that when the kernel outputs incorrect results, it's always outputting 0 after the same index. So there's some determinism here.