평가 방법
glee1228 opened this issue · 0 comments
glee1228 commented
Evaluation 방법
reference : stanford cs276 Introduction of Information Retrieval Evaluation part
By glee1228@naver.com
5k Dataset Download Link : http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
- 데이터셋 구성(train)
루트 디렉토리 이름 : oxbuild_images
-
train
- AllSouls_Oxford(133 pics)
- Balliol_Oxford(155 pics)
- ChristChurch_Oxford(544 pics)
- Hertford_Oxford(68 pics)
- Jesus_Oxford(162 pics)
- Keble_Oxford(122 pics)
- Magdalen_Oxford(686 pics)
- New_Oxford(459 pics)
- Oriel_Oxford(96 pics)
- Trinity_Oxford(218 pics)
- RadcliffeCamera_Oxford(283 pics)
- Cornmarket_Oxford(60 pics)
- Bodleian_Oxford(215 pics)
- PittRivers_Oxford(109 pics)
- Ashmolean_Oxford(196 pics)
- Worcester_Oxford(71 pics)
-
레이블 없는1503 pics
성능 평가 방법
- Precision@K (P@K)
- Mean Average Precision (MAP)
Precision@K
-
Set a rank threshold K
-
Compute % relevant in top K
-
Ignores documents ranked lower than K
Ex: True, False, True, False, True
Prec@3 of 2/3
Prec@4 of 2/4
Prec@5 of 3/5
Mean Average Precision
-
Consider rank position of each relevant doc
-
Compute Precision@K for each K_1, K_2, … , K_R
-
Average precision = average of P@K
Ex: True, False, True, False, True
이 결과의 MAP = 1/3*(1/1+2/3+3/5) :=0.76
- MAP is Average Precision across multiple
queries/rankings
Average Precision example
MAP example
![MAP_example]