A possible solution to handle more corner cases when computing ARI scores
jinyangyuan opened this issue · 0 comments
jinyangyuan commented
The adjusted_rand_index
funcion in segmentation_metrics.py
may return NaN values when true_mask[b, :, g]
or pred_mask[b, :, g]
is 0 for some b
and g
. I think a possible solution is to return 1 if (n_points * (n_points - 1))
or (max_rindex - expected_rindex)
is 0.
invalid = tf.logical_or(
tf.equal(n_points * (n_points - 1), 0), tf.equal(max_rindex - expected_rindex, 0))
return tf.where(invalid, tf.ones_like(ari), ari)