Help with opening netcdf4 files via HTTP
rabernat opened this issue ยท 19 comments
This is not necessarily an xarray-beam specific question; however it relates to issues here (e.g. #37, #32) as well as in Pangeo Forge. So I am asking it here. I hope people here will be able to help me. Ultimately I hope this will help use resolve pangeo-forge/pangeo-forge-recipes#373 and move forward with merging Pangeo Forge and xarray-beam.
Goal: open xarray datasets from HTTP endpoints lazily and pass them around a beam pipeline. Delay loading of data variable until later in the pipeline.
What I have tried
Here is the basic pipeline I am working with. It is a simplified, self-contained version of what we will want to do in Pangeo Forge. (Note: this probably requires installing the latest version of fsspec from master, in order to get fsspec/filesystem_spec#973.)
import xarray as xr
import fsspec
import apache_beam as beam
from apache_beam.testing.test_pipeline import TestPipeline
from apache_beam.testing.util import BeamAssertException, assert_that
def open_http_url_with_fsspec(url):
return fsspec.open(url, mode='rb')
def open_fsspec_openfile_with_xarray(of):
with of as fp:
with xr.open_dataset(fp, engine='h5netcdf') as ds:
return ds
def load_xarray_ds(ds):
return ds.load()
def is_xr_dataset():
def _is_xr_dataset(actual):
for ds in actual:
if not isinstance(ds, xr.Dataset):
raise BeamAssertException(f"Object {ds} has type {type(ds)}, expected xr.Dataset.")
if not ds.AerosolOpticalThickness.variable._in_memory:
raise BeamAssertException(f"Variable not in memory")
return _is_xr_dataset
URL = 'https://www.unidata.ucar.edu/software/netcdf/examples/OMI-Aura_L2-example.nc'
with TestPipeline() as p:
inputs = p | beam.Create([URL])
open_files = inputs | beam.Map(open_http_url_with_fsspec)
dsets = open_files | beam.Map(open_fsspec_openfile_with_xarray)
loaded_dsets = dsets | beam.Map(load_xarray_ds)
assert_that(loaded_dsets, is_xr_dataset())
When I run this I get ValueError: I/O operation on closed file. [while running '[1]: Map(load_xarray_ds)']
Full Traceback
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.9 interpreter.
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
~/Code/xarray/xarray/backends/file_manager.py in _acquire_with_cache_info(self, needs_lock)
198 try:
--> 199 file = self._cache[self._key]
200 except KeyError:
~/Code/xarray/xarray/backends/lru_cache.py in __getitem__(self, key)
52 with self._lock:
---> 53 value = self._cache[key]
54 self._cache.move_to_end(key)
KeyError: [<class 'h5netcdf.core.File'>, (<File-like object HTTPFileSystem, https://www.unidata.ucar.edu/software/netcdf/examples/OMI-Aura_L2-example.nc>,), 'r', (('decode_vlen_strings', True), ('invalid_netcdf', None))]
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.DoFnRunner.process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.SimpleInvoker.invoke_process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/transforms/core.py in <lambda>(x)
1638 else:
-> 1639 wrapper = lambda x: [fn(x)]
1640
<ipython-input-1-53601ea18ea3> in load_xarray_ds(ds)
19 def load_xarray_ds(ds):
---> 20 return ds.load()
21
~/Code/xarray/xarray/core/dataset.py in load(self, **kwargs)
688 if k not in lazy_data:
--> 689 v.load()
690
~/Code/xarray/xarray/core/variable.py in load(self, **kwargs)
443 elif not is_duck_array(self._data):
--> 444 self._data = np.asarray(self._data)
445 return self
~/Code/xarray/xarray/core/indexing.py in __array__(self, dtype)
655 def __array__(self, dtype=None):
--> 656 self._ensure_cached()
657 return np.asarray(self.array, dtype=dtype)
~/Code/xarray/xarray/core/indexing.py in _ensure_cached(self)
652 if not isinstance(self.array, NumpyIndexingAdapter):
--> 653 self.array = NumpyIndexingAdapter(np.asarray(self.array))
654
~/Code/xarray/xarray/core/indexing.py in __array__(self, dtype)
625 def __array__(self, dtype=None):
--> 626 return np.asarray(self.array, dtype=dtype)
627
~/Code/xarray/xarray/core/indexing.py in __array__(self, dtype)
526 array = as_indexable(self.array)
--> 527 return np.asarray(array[self.key], dtype=None)
528
~/Code/xarray/xarray/backends/h5netcdf_.py in __getitem__(self, key)
50 def __getitem__(self, key):
---> 51 return indexing.explicit_indexing_adapter(
52 key, self.shape, indexing.IndexingSupport.OUTER_1VECTOR, self._getitem
~/Code/xarray/xarray/core/indexing.py in explicit_indexing_adapter(key, shape, indexing_support, raw_indexing_method)
815 raw_key, numpy_indices = decompose_indexer(key, shape, indexing_support)
--> 816 result = raw_indexing_method(raw_key.tuple)
817 if numpy_indices.tuple:
~/Code/xarray/xarray/backends/h5netcdf_.py in _getitem(self, key)
59 with self.datastore.lock:
---> 60 array = self.get_array(needs_lock=False)
61 return array[key]
~/Code/xarray/xarray/backends/h5netcdf_.py in get_array(self, needs_lock)
46 def get_array(self, needs_lock=True):
---> 47 ds = self.datastore._acquire(needs_lock)
48 return ds.variables[self.variable_name]
~/Code/xarray/xarray/backends/h5netcdf_.py in _acquire(self, needs_lock)
181 def _acquire(self, needs_lock=True):
--> 182 with self._manager.acquire_context(needs_lock) as root:
183 ds = _nc4_require_group(
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/contextlib.py in __enter__(self)
118 try:
--> 119 return next(self.gen)
120 except StopIteration:
~/Code/xarray/xarray/backends/file_manager.py in acquire_context(self, needs_lock)
186 """Context manager for acquiring a file."""
--> 187 file, cached = self._acquire_with_cache_info(needs_lock)
188 try:
~/Code/xarray/xarray/backends/file_manager.py in _acquire_with_cache_info(self, needs_lock)
204 kwargs["mode"] = self._mode
--> 205 file = self._opener(*self._args, **kwargs)
206 if self._mode == "w":
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/h5netcdf/core.py in __init__(self, path, mode, invalid_netcdf, phony_dims, **kwargs)
720 self._preexisting_file = mode in {"r", "r+", "a"}
--> 721 self._h5file = h5py.File(path, mode, **kwargs)
722 except Exception:
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/h5py/_hl/files.py in __init__(self, name, mode, driver, libver, userblock_size, swmr, rdcc_nslots, rdcc_nbytes, rdcc_w0, track_order, fs_strategy, fs_persist, fs_threshold, fs_page_size, page_buf_size, min_meta_keep, min_raw_keep, locking, **kwds)
506 fs_page_size=fs_page_size)
--> 507 fid = make_fid(name, mode, userblock_size, fapl, fcpl, swmr=swmr)
508
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/h5py/_hl/files.py in make_fid(name, mode, userblock_size, fapl, fcpl, swmr)
219 flags |= h5f.ACC_SWMR_READ
--> 220 fid = h5f.open(name, flags, fapl=fapl)
221 elif mode == 'r+':
h5py/_objects.pyx in h5py._objects.with_phil.wrapper()
h5py/_objects.pyx in h5py._objects.with_phil.wrapper()
h5py/h5f.pyx in h5py.h5f.open()
h5py/h5fd.pyx in h5py.h5fd.H5FD_fileobj_read()
~/Code/filesystem_spec/fsspec/spec.py in readinto(self, b)
1587 out = memoryview(b).cast("B")
-> 1588 data = self.read(out.nbytes)
1589 out[: len(data)] = data
~/Code/filesystem_spec/fsspec/implementations/http.py in read(self, length)
573 length = min(self.size - self.loc, length)
--> 574 return super().read(length)
575
~/Code/filesystem_spec/fsspec/spec.py in read(self, length)
1572 if self.closed:
-> 1573 raise ValueError("I/O operation on closed file.")
1574 logger.debug("%s read: %i - %i" % (self, self.loc, self.loc + length))
ValueError: I/O operation on closed file.
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
<ipython-input-1-53601ea18ea3> in <module>
41 loaded_dsets = dsets | beam.Map(load_xarray_ds)
42
---> 43 assert_that(loaded_dsets, is_xr_dataset())
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/pipeline.py in __exit__(self, exc_type, exc_val, exc_tb)
594 try:
595 if not exc_type:
--> 596 self.result = self.run()
597 self.result.wait_until_finish()
598 finally:
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/testing/test_pipeline.py in run(self, test_runner_api)
110
111 def run(self, test_runner_api=True):
--> 112 result = super().run(
113 test_runner_api=(
114 False if self.not_use_test_runner_api else test_runner_api))
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/pipeline.py in run(self, test_runner_api)
544 # When possible, invoke a round trip through the runner API.
545 if test_runner_api and self._verify_runner_api_compatible():
--> 546 return Pipeline.from_runner_api(
547 self.to_runner_api(use_fake_coders=True),
548 self.runner,
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/pipeline.py in run(self, test_runner_api)
571 finally:
572 shutil.rmtree(tmpdir)
--> 573 return self.runner.run_pipeline(self, self._options)
574 finally:
575 if not is_in_ipython():
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/direct/direct_runner.py in run_pipeline(self, pipeline, options)
129 runner = BundleBasedDirectRunner()
130
--> 131 return runner.run_pipeline(pipeline, options)
132
133
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/portability/fn_api_runner/fn_runner.py in run_pipeline(self, pipeline, options)
197 options.view_as(pipeline_options.ProfilingOptions))
198
--> 199 self._latest_run_result = self.run_via_runner_api(
200 pipeline.to_runner_api(default_environment=self._default_environment))
201 return self._latest_run_result
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/portability/fn_api_runner/fn_runner.py in run_via_runner_api(self, pipeline_proto)
208 # TODO(pabloem, BEAM-7514): Create a watermark manager (that has access to
209 # the teststream (if any), and all the stages).
--> 210 return self.run_stages(stage_context, stages)
211
212 @contextlib.contextmanager
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/portability/fn_api_runner/fn_runner.py in run_stages(self, stage_context, stages)
393 )
394
--> 395 stage_results = self._run_stage(
396 runner_execution_context, bundle_context_manager)
397
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/portability/fn_api_runner/fn_runner.py in _run_stage(self, runner_execution_context, bundle_context_manager)
658 while True:
659 last_result, deferred_inputs, fired_timers, watermark_updates = (
--> 660 self._run_bundle(
661 runner_execution_context,
662 bundle_context_manager,
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/portability/fn_api_runner/fn_runner.py in _run_bundle(self, runner_execution_context, bundle_context_manager, data_input, data_output, input_timers, expected_timer_output, bundle_manager)
781 expected_timer_output)
782
--> 783 result, splits = bundle_manager.process_bundle(
784 data_input, data_output, input_timers, expected_timer_output)
785 # Now we collect all the deferred inputs remaining from bundle execution.
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/portability/fn_api_runner/fn_runner.py in process_bundle(self, inputs, expected_outputs, fired_timers, expected_output_timers, dry_run)
1092 process_bundle_descriptor.id,
1093 cache_tokens=[next(self._cache_token_generator)]))
-> 1094 result_future = self._worker_handler.control_conn.push(process_bundle_req)
1095
1096 split_results = [] # type: List[beam_fn_api_pb2.ProcessBundleSplitResponse]
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/portability/fn_api_runner/worker_handlers.py in push(self, request)
376 self._uid_counter += 1
377 request.instruction_id = 'control_%s' % self._uid_counter
--> 378 response = self.worker.do_instruction(request)
379 return ControlFuture(request.instruction_id, response)
380
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/worker/sdk_worker.py in do_instruction(self, request)
578 if request_type:
579 # E.g. if register is set, this will call self.register(request.register))
--> 580 return getattr(self, request_type)(
581 getattr(request, request_type), request.instruction_id)
582 else:
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/worker/sdk_worker.py in process_bundle(self, request, instruction_id)
616 with self.maybe_profile(instruction_id):
617 delayed_applications, requests_finalization = (
--> 618 bundle_processor.process_bundle(instruction_id))
619 monitoring_infos = bundle_processor.monitoring_infos()
620 monitoring_infos.extend(self.state_cache_metrics_fn())
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/worker/bundle_processor.py in process_bundle(self, instruction_id)
993 element.timer_family_id, timer_data)
994 elif isinstance(element, beam_fn_api_pb2.Elements.Data):
--> 995 input_op_by_transform_id[element.transform_id].process_encoded(
996 element.data)
997
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/worker/bundle_processor.py in process_encoded(self, encoded_windowed_values)
219 decoded_value = self.windowed_coder_impl.decode_from_stream(
220 input_stream, True)
--> 221 self.output(decoded_value)
222
223 def monitoring_infos(self, transform_id, tag_to_pcollection_id):
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/worker/operations.cpython-39-darwin.so in apache_beam.runners.worker.operations.Operation.output()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/worker/operations.cpython-39-darwin.so in apache_beam.runners.worker.operations.Operation.output()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/worker/operations.cpython-39-darwin.so in apache_beam.runners.worker.operations.SingletonConsumerSet.receive()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/worker/operations.cpython-39-darwin.so in apache_beam.runners.worker.operations.DoOperation.process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/worker/operations.cpython-39-darwin.so in apache_beam.runners.worker.operations.DoOperation.process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.DoFnRunner.process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.DoFnRunner._reraise_augmented()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.DoFnRunner.process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.SimpleInvoker.invoke_process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common._OutputProcessor.process_outputs()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/worker/operations.cpython-39-darwin.so in apache_beam.runners.worker.operations.SingletonConsumerSet.receive()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/worker/operations.cpython-39-darwin.so in apache_beam.runners.worker.operations.DoOperation.process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/worker/operations.cpython-39-darwin.so in apache_beam.runners.worker.operations.DoOperation.process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.DoFnRunner.process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.DoFnRunner._reraise_augmented()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.DoFnRunner.process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.SimpleInvoker.invoke_process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common._OutputProcessor.process_outputs()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/worker/operations.cpython-39-darwin.so in apache_beam.runners.worker.operations.SingletonConsumerSet.receive()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/worker/operations.cpython-39-darwin.so in apache_beam.runners.worker.operations.DoOperation.process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/worker/operations.cpython-39-darwin.so in apache_beam.runners.worker.operations.DoOperation.process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.DoFnRunner.process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.DoFnRunner._reraise_augmented()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.DoFnRunner.process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.SimpleInvoker.invoke_process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common._OutputProcessor.process_outputs()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/worker/operations.cpython-39-darwin.so in apache_beam.runners.worker.operations.SingletonConsumerSet.receive()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/worker/operations.cpython-39-darwin.so in apache_beam.runners.worker.operations.DoOperation.process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/worker/operations.cpython-39-darwin.so in apache_beam.runners.worker.operations.DoOperation.process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.DoFnRunner.process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.DoFnRunner._reraise_augmented()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.DoFnRunner.process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.SimpleInvoker.invoke_process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common._OutputProcessor.process_outputs()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/worker/operations.cpython-39-darwin.so in apache_beam.runners.worker.operations.SingletonConsumerSet.receive()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/worker/operations.cpython-39-darwin.so in apache_beam.runners.worker.operations.DoOperation.process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/worker/operations.cpython-39-darwin.so in apache_beam.runners.worker.operations.DoOperation.process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.DoFnRunner.process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.DoFnRunner._reraise_augmented()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.DoFnRunner.process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/runners/common.cpython-39-darwin.so in apache_beam.runners.common.SimpleInvoker.invoke_process()
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/apache_beam/transforms/core.py in <lambda>(x)
1637 wrapper = lambda x, *args, **kwargs: [fn(x, *args, **kwargs)]
1638 else:
-> 1639 wrapper = lambda x: [fn(x)]
1640
1641 label = 'Map(%s)' % ptransform.label_from_callable(fn)
<ipython-input-1-53601ea18ea3> in load_xarray_ds(ds)
18
19 def load_xarray_ds(ds):
---> 20 return ds.load()
21
22
~/Code/xarray/xarray/core/dataset.py in load(self, **kwargs)
687 for k, v in self.variables.items():
688 if k not in lazy_data:
--> 689 v.load()
690
691 return self
~/Code/xarray/xarray/core/variable.py in load(self, **kwargs)
442 self._data = as_compatible_data(self._data.compute(**kwargs))
443 elif not is_duck_array(self._data):
--> 444 self._data = np.asarray(self._data)
445 return self
446
~/Code/xarray/xarray/core/indexing.py in __array__(self, dtype)
654
655 def __array__(self, dtype=None):
--> 656 self._ensure_cached()
657 return np.asarray(self.array, dtype=dtype)
658
~/Code/xarray/xarray/core/indexing.py in _ensure_cached(self)
651 def _ensure_cached(self):
652 if not isinstance(self.array, NumpyIndexingAdapter):
--> 653 self.array = NumpyIndexingAdapter(np.asarray(self.array))
654
655 def __array__(self, dtype=None):
~/Code/xarray/xarray/core/indexing.py in __array__(self, dtype)
624
625 def __array__(self, dtype=None):
--> 626 return np.asarray(self.array, dtype=dtype)
627
628 def __getitem__(self, key):
~/Code/xarray/xarray/core/indexing.py in __array__(self, dtype)
525 def __array__(self, dtype=None):
526 array = as_indexable(self.array)
--> 527 return np.asarray(array[self.key], dtype=None)
528
529 def transpose(self, order):
~/Code/xarray/xarray/backends/h5netcdf_.py in __getitem__(self, key)
49
50 def __getitem__(self, key):
---> 51 return indexing.explicit_indexing_adapter(
52 key, self.shape, indexing.IndexingSupport.OUTER_1VECTOR, self._getitem
53 )
~/Code/xarray/xarray/core/indexing.py in explicit_indexing_adapter(key, shape, indexing_support, raw_indexing_method)
814 """
815 raw_key, numpy_indices = decompose_indexer(key, shape, indexing_support)
--> 816 result = raw_indexing_method(raw_key.tuple)
817 if numpy_indices.tuple:
818 # index the loaded np.ndarray
~/Code/xarray/xarray/backends/h5netcdf_.py in _getitem(self, key)
58 key = tuple(list(k) if isinstance(k, np.ndarray) else k for k in key)
59 with self.datastore.lock:
---> 60 array = self.get_array(needs_lock=False)
61 return array[key]
62
~/Code/xarray/xarray/backends/h5netcdf_.py in get_array(self, needs_lock)
45 class H5NetCDFArrayWrapper(BaseNetCDF4Array):
46 def get_array(self, needs_lock=True):
---> 47 ds = self.datastore._acquire(needs_lock)
48 return ds.variables[self.variable_name]
49
~/Code/xarray/xarray/backends/h5netcdf_.py in _acquire(self, needs_lock)
180
181 def _acquire(self, needs_lock=True):
--> 182 with self._manager.acquire_context(needs_lock) as root:
183 ds = _nc4_require_group(
184 root, self._group, self._mode, create_group=_h5netcdf_create_group
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/contextlib.py in __enter__(self)
117 del self.args, self.kwds, self.func
118 try:
--> 119 return next(self.gen)
120 except StopIteration:
121 raise RuntimeError("generator didn't yield") from None
~/Code/xarray/xarray/backends/file_manager.py in acquire_context(self, needs_lock)
185 def acquire_context(self, needs_lock=True):
186 """Context manager for acquiring a file."""
--> 187 file, cached = self._acquire_with_cache_info(needs_lock)
188 try:
189 yield file
~/Code/xarray/xarray/backends/file_manager.py in _acquire_with_cache_info(self, needs_lock)
203 kwargs = kwargs.copy()
204 kwargs["mode"] = self._mode
--> 205 file = self._opener(*self._args, **kwargs)
206 if self._mode == "w":
207 # ensure file doesn't get overridden when opened again
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/h5netcdf/core.py in __init__(self, path, mode, invalid_netcdf, phony_dims, **kwargs)
719 else:
720 self._preexisting_file = mode in {"r", "r+", "a"}
--> 721 self._h5file = h5py.File(path, mode, **kwargs)
722 except Exception:
723 self._closed = True
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/h5py/_hl/files.py in __init__(self, name, mode, driver, libver, userblock_size, swmr, rdcc_nslots, rdcc_nbytes, rdcc_w0, track_order, fs_strategy, fs_persist, fs_threshold, fs_page_size, page_buf_size, min_meta_keep, min_raw_keep, locking, **kwds)
505 fs_persist=fs_persist, fs_threshold=fs_threshold,
506 fs_page_size=fs_page_size)
--> 507 fid = make_fid(name, mode, userblock_size, fapl, fcpl, swmr=swmr)
508
509 if isinstance(libver, tuple):
/opt/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/h5py/_hl/files.py in make_fid(name, mode, userblock_size, fapl, fcpl, swmr)
218 if swmr and swmr_support:
219 flags |= h5f.ACC_SWMR_READ
--> 220 fid = h5f.open(name, flags, fapl=fapl)
221 elif mode == 'r+':
222 fid = h5f.open(name, h5f.ACC_RDWR, fapl=fapl)
h5py/_objects.pyx in h5py._objects.with_phil.wrapper()
h5py/_objects.pyx in h5py._objects.with_phil.wrapper()
h5py/h5f.pyx in h5py.h5f.open()
h5py/h5fd.pyx in h5py.h5fd.H5FD_fileobj_read()
~/Code/filesystem_spec/fsspec/spec.py in readinto(self, b)
1586 """
1587 out = memoryview(b).cast("B")
-> 1588 data = self.read(out.nbytes)
1589 out[: len(data)] = data
1590 return len(data)
~/Code/filesystem_spec/fsspec/implementations/http.py in read(self, length)
572 else:
573 length = min(self.size - self.loc, length)
--> 574 return super().read(length)
575
576 async def async_fetch_all(self):
~/Code/filesystem_spec/fsspec/spec.py in read(self, length)
1571 length = self.size - self.loc
1572 if self.closed:
-> 1573 raise ValueError("I/O operation on closed file.")
1574 logger.debug("%s read: %i - %i" % (self, self.loc, self.loc + length))
1575 if length == 0:
ValueError: I/O operation on closed file. [while running '[1]: Map(load_xarray_ds)']
This is not quite the same error as I am getting in pangeo-forge/pangeo-forge-recipes#373; there it it instead OSError: Unable to open file (incorrect metadata checksum after all read attempts)
. I have not been able to reproduce that error outside of pytest. However, my example here fails at the same point: when calling ds.load()
on an h5netcdf-backed xarray dataset pointing at an fsspec HTTPFile object.
What is wrong
Overall my concern is with this pattern:
def open_fsspec_openfile_with_xarray(of):
with of as fp:
return xr.open_dataset(fp, engine='h5netcdf') as ds:
return ds
It feels wrong. I should either be yeild
ing or else not using context managers. The first context manager is necessary. The second may be optional. But overall my understanding is that the outputs of the Map
function need to be pickled, in which case the contextmanager pattern doesn't make sense at all. I have tried various other flavors, like
def open_fsspec_openfile_with_xarray(of):
with of as fp:
with xr.open_dataset(fp, engine='h5netcdf') as ds:
pass
return ds
or
def open_fsspec_openfile_with_xarray(of):
with of as fp:
ds = xr.open_dataset(fp, engine='h5netcdf')
return ds
but nothing seems to work. The fundamental issue seems to be simply this
with fsspec.open(URL) as fp:
ds = xr.open_dataset(fp, engine='h5netcdf')
ds.load() # -> ValueError: I/O operation on closed file.
Has anyone here managed to make something like this work? I feel like I'm missing something obvious.
One other weird datapoint that I have discovered is that I can pickle the un-loadable dataset, load it from the pickle, and then call .load()
and it works!
url = 'https://www.unidata.ucar.edu/software/netcdf/examples/OMI-Aura_L2-example.nc' # netcdf
open_file = fsspec.open(url, mode='rb')
with open_file as fp:
with xr.open_dataset(fp, engine='h5netcdf') as ds:
pass
ds_pk = pickle.dumps(ds)
ds1 = pickle.loads(ds_pk)
ds1.load()
This suggests that the dataset is serializable in some way. But something is happening in beam that is preventing that path from being taken.
Ok the mystery deepens even further. After running the code just above, you can then call ds.load()
on the original dataset, and it works. This suggests that the two datasets are somehow sharing some state, perhaps via Xarray's CachingFileManager. @shoyer does that seem plausible?
I'm enjoying the conversation with myself, so I'll just keep going... ๐
I figured out a bizarre workaround that makes it work
def open_fsspec_openfile_with_xarray(of):
with of as fp:
with xr.open_dataset(fp, engine='h5netcdf') as ds:
pass
ds1 = pickle.loads(pickle.dumps(ds))
return ds1
Wait, what!?
I would have thought that pickle.dumps()
is exactly what was being done anyway, so roundtripping with pickle a second time really shouldn't be making any difference. Can you see anything difference between the __dict__
of ds and ds1 or their binary pickled representation? What about if you pickle with protocol=1
?
By the way, copy.deepcopy
should do about the same thing, without first making the bytestring.
I have not tried to introspect the pickle objects. I don't know much about pickle details and internals. #49 (comment) is a fully isolated, copy-pasteable reproducer for this, so if you wanted to dig in, that would be the place to start.
My best guess is that there is an is_closed
parameter somewhere deep in the h5py.File object, and that pickling / unpickling triggers this to be reset. For http, it doesn't really mean anything for a file to be "open", so this notion of open / closed files can only cause problem.
This could also be interacting with Xarray in some unexpected ways. See pydata/xarray#4242 for some discussion of that.
I got some weird conversion error
~/conda/envs/py38/lib/python3.8/site-packages/xarray/conventions.py in _update_bounds_attributes(variables)
399 for v in variables.values():
400 attrs = v.attrs
--> 401 has_date_units = "units" in attrs and "since" in attrs["units"]
402 if has_date_units and "bounds" in attrs:
403 if attrs["bounds"] in variables:
TypeError: argument of type 'Empty' is not iterable
Perhaps I need later versions of things.
Just try with a different remote file, e.g
url = 'https://power-datastore.s3.amazonaws.com/v9/climatology/power_901_rolling_zones_utc.nc'
Just a guess, but have you tried asking Beam to use cloudpickle rather than dill? I believe this is a recently added option. Cloudpickle is used for Dask, so this might work a bit more consistently.
Thanks for the suggestion Stephan. I tried as follows
from apache_beam.options.pipeline_options import PipelineOptions
options = PipelineOptions(pickle_library="cloudpickle")
with TestPipeline(options=options) as p:
However, it appears to have no effect. I can specify pickle_library="foobar"
with no consequences. I am on Beam 2.38.0, so it should support the cloudpickle option, which was introduced in 2.36.0. Maybe I am not passing the option correctly...
I can specify
pickle_library="foobar"
with no consequences.
This is probably a red herring. The code to set the pickler doesn't raise any errors if you pass an invalid option. So I am going to assume that that option does work, and that it doesn't solve the problem.
Some more deep introspecting into these objects.
import xarray as xr
import fsspec
from cloudpickle import dumps, loads
from pprint import pprint as print
url = 'https://power-datastore.s3.amazonaws.com/v9/climatology/power_901_rolling_zones_utc.nc'
with fsspec.open(url) as fp:
with xr.open_dataset(fp, engine='h5netcdf') as ds0:
pass
ds_pk = dumps(ds0)
ds1 = loads(ds_pk)
# go deep inside Xarray's array wrappers to get out the `xarray.backends.h5netcdf_.H5NetCDFArrayWrapper` objects
wrapper0 = ds0.T_ZONES.variable._data.array.array.array.array.array
wrapper1 = ds1.T_ZONES.variable._data.array.array.array.array.array
# now go inside those and get the actual `fsspec.implementations.http.HTTPFile` objects
fobj0 = wrapper0.datastore._manager._args[0]
fobj1 = wrapper1.datastore._manager._args[0]
print(fobj0.__dict__)
print(fobj1.__dict__)
{'_closed': True,
'_details': {'name': 'https://power-datastore.s3.amazonaws.com/v9/climatology/power_901_rolling_zones_utc.nc',
'size': 1183063,
'type': 'file'},
'asynchronous': False,
'autocommit': True,
'blocksize': 5242880,
'cache': None,
'end': None,
'fs': <fsspec.implementations.http.HTTPFileSystem object at 0x187cf1c10>,
'kwargs': {},
'loc': 1183063,
'loop': <_UnixSelectorEventLoop running=True closed=False debug=False>,
'mode': 'rb',
'path': 'https://power-datastore.s3.amazonaws.com/v9/climatology/power_901_rolling_zones_utc.nc',
'session': <aiohttp.client.ClientSession object at 0x187cf1e20>,
'size': 1183063,
'start': None,
'url': 'https://power-datastore.s3.amazonaws.com/v9/climatology/power_901_rolling_zones_utc.nc'}
{'_closed': False,
'_details': {'name': 'https://power-datastore.s3.amazonaws.com/v9/climatology/power_901_rolling_zones_utc.nc',
'size': 1183063,
'type': 'file'},
'asynchronous': False,
'autocommit': True,
'blocksize': 5242880,
'cache': <fsspec.caching.BaseCache object at 0x18d4a32e0>,
'end': None,
'fs': <fsspec.implementations.http.HTTPFileSystem object at 0x187cf1c10>,
'kwargs': {},
'loc': 0,
'loop': <_UnixSelectorEventLoop running=True closed=False debug=False>,
'mode': 'rb',
'path': 'https://power-datastore.s3.amazonaws.com/v9/climatology/power_901_rolling_zones_utc.nc',
'session': <aiohttp.client.ClientSession object at 0x187cf1e20>,
'size': 1183063,
'start': None,
'url': 'https://power-datastore.s3.amazonaws.com/v9/climatology/power_901_rolling_zones_utc.nc'}
I tried taking fobj0
and manually setting
fobj0._closed = False
fobj0.loc = 0
ds0.load()
However, this lead to the error
~/Code/filesystem_spec/fsspec/spec.py in readinto(self, b)
1586 """
1587 out = memoryview(b).cast("B")
-> 1588 data = self.read(out.nbytes)
1589 out[: len(data)] = data
1590 return len(data)
~/Code/filesystem_spec/fsspec/implementations/http.py in read(self, length)
572 else:
573 length = min(self.size - self.loc, length)
--> 574 return super().read(length)
575
576 async def async_fetch_all(self):
~/Code/filesystem_spec/fsspec/spec.py in read(self, length)
1576 # don't even bother calling fetch
1577 return b""
-> 1578 out = self.cache._fetch(self.loc, self.loc + length)
1579 self.loc += len(out)
1580 return out
AttributeError: 'NoneType' object has no attribute '_fetch'
So we need a file-like where close()
as a no-op? It seems like a natural thing to discard read buffers if close gets called, and I suppose that is expected to happen on context end, whether or not explicitly done by xarray.
Perhaps we are barking up the wrong tree. Once the dataset is passed through pickle or cloudpickle, it becomes loadable again. In #49 (comment) @shoyer suggested we should be able to force beam to use cloudpickle to serialize things. So it should be working without any changes to our libraries. I am currently trying to dig deeper into the dill vs. cloudpickle issue.
The fundamental issue seems to be simply this
with fsspec.open(URL) as fp: ds = xr.open_dataset(fp, engine='h5netcdf') ds.load() # -> ValueError: I/O operation on closed file.
I'm finally looking into this a little in detail.
Why do you use context managers in the functions that you're passing into beam.Map? I would generally not expect something like this to work -- the context manager is explicitly closing the file object.
Objects passed between transforms in a Beam pipeline are not necessarily serialized via pickle (which as I understand would fix this by reopening the file), because it's unnecessary overhead if the separate map stages are evaluated on the same machine.
So anyways, if I were do to this I would not use a context manager in the opener function.
Thanks a lot Stephan! I appreciate your time.
Why do you use context managers in the functions that you're passing into beam.Map?
Because that's what fsspec seems to require! I went on an extremely deep dive on this in fsspec/filesystem_spec#579. In the end, the recommendation from @martindurant was to always use the context manager when opening a file-like object (see fsspec/filesystem_spec#579 (comment)). However, that requirement seems incompatible with serialization, as you noted.
I would love to see an example of opening a NetCDF4 file remotely over HTTP using the h5netcdf engine without a context manager.
I would love to see an example of opening a NetCDF4 file remotely over HTTP using the h5netcdf engine without a context manager.
Ok, so I actually did test this case in fsspec/filesystem_spec#579 (comment). The following works with HTTP
def open_fsspec_openfile_with_xarray(of):
return xr.open_dataset(of.open(), engine='h5netcdf')
@martindurant, is that kosher?
Yes, it's fine - the file will "close" (meaning dropping the buffer) when garbage collected. Local files instances made this way also pickle.
But if I do, that I again hit the problem (from fsspec/filesystem_spec#579 (comment)) that fs.open
and fsspec.open
have different behavior! ๐ซ
This works
open_file = fsspec.open(url)
ds = xr.open_dataset(open_file.open())
# but not
ds = xr.open_dataset(open_file)
# -> AttributeError: 'HTTPFile' object has no attribute '__fspath__'
or this works
from fsspec.implementations.http import HTTPFileSystem
fs = HTTPFileSystem()
open_file = fs.open(url)
ds = xr.open_dataset(open_file)
# but not
ds = xr.open_dataset(open_file.open())
# -> AttributeError: 'HTTPFile' object has no attribute 'open'"
Ok I am satisfied with my workaround in pangeo-forge/pangeo-forge-recipes@c20f3fd, which is basically
if hasattr(open_file, "open"):
open_file = open_file.open()
ds = xr.open_dataset(open_file)
This seems to reliably serialize with whatever fsspec can throw at us.
Sorry for the noise here. I appreciate the help.