VIAJANTE DO TEMPO. TECNOLOGIA QUE USAMOS EM 2030.. SKY NET FASE 1
Opened this issue · 0 comments
felipeliliti commented
PROJETO MK ULTA AURORA STK 3.6.9
Estrutura do Projeto
aurora_project/
│
├── app/
│ ├── __init__.py
│ ├── routes.py
│ ├── gan.py
│ ├── sentiment_analysis.py
│ ├── speech_recognition.py
│ ├── translation.py
│ └── assistant.py
│
├── templates/
│ └── index.html
│
├── static/
│ └── css/
│ └── styles.css
│
├── run.py
└── requirements.txt
1. app/__init__.py
from flask import Flask
def create_app():
app = Flask(__name__)
from .routes import main as main_blueprint
app.register_blueprint(main_blueprint)
return app
2. app/routes.py
from flask import Blueprint, request, jsonify
from .gan import generate_image
from .sentiment_analysis import analyze_sentiment
from .speech_recognition import transcribe_audio
from .translation import translate_text
from .assistant import generate_response
main = Blueprint('main', __name__)
@main.route('/')
def index():
return "Welcome to AURORA AI"
@main.route('/generate_image', methods=['POST'])
def generate_image_route():
# Implement image generation logic here
return jsonify({"message": "Image generation route"})
@main.route('/analyze_sentiment', methods=['POST'])
def analyze_sentiment_route():
text = request.json['text']
result = analyze_sentiment(text)
return jsonify(result)
@main.route('/transcribe_audio', methods=['POST'])
def transcribe_audio_route():
# Implement audio transcription logic here
return jsonify({"message": "Audio transcription route"})
@main.route('/translate', methods=['POST'])
def translate_route():
text = request.json['text']
target_language = request.json['target_language']
result = translate_text(text, target_language)
return jsonify({"translated_text": result})
@main.route('/assistant', methods=['POST'])
def assistant_route():
prompt = request.json['prompt']
response = generate_response(prompt)
return jsonify({"response": response})
3. app/gan.py
# Import the necessary libraries for GANs
import torch
from torchvision.utils import save_image
from stylegan2_pytorch import Trainer
# Function to generate image
def generate_image():
# Define and train the GAN here
return "GAN Image"
4. app/sentiment_analysis.py
from transformers import pipeline
sentiment_pipeline = pipeline('sentiment-analysis')
def analyze_sentiment(text):
result = sentiment_pipeline(text)
return result
5. app/speech_recognition.py
from google.cloud import speech_v1p1beta1 as speech
client = speech.SpeechClient()
def transcribe_audio(file_path):
with open(file_path, "rb") as audio_file:
content = audio_file.read()
audio = speech.RecognitionAudio(content=content)
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=16000,
language_code="en-US",
)
response = client.recognize(config=config, audio=audio)
for result in response.results:
return result.alternatives[0].transcript
6. app/translation.py
from google.cloud import translate_v2 as translate
translate_client = translate.Client()
def translate_text(text, target_language):
result = translate_client.translate(text, target_language=target_language)
return result["translatedText"]
7. app/assistant.py
from transformers import GPT2LMHeadModel, GPT2Tokenizer
model_name = "gpt-2"
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
def generate_response(prompt):
inputs = tokenizer.encode(prompt, return_tensors="pt")
outputs = model.generate(inputs, max_length=100, do_sample=True, temperature=0.7)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
8. templates/index.html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>AURORA AI</title>
<link rel="stylesheet" href="{{ url_for('static', filename='css/styles.css') }}">
</head>
<body>
<h1>Welcome to AURORA AI</h1>
</body>
</html>
9. static/css/styles.css
body {
font-family: Arial, sans-serif;
text-align: center;
margin-top: 50px;
}
10. run.py
from app import create_app
app = create_app()
if __name__ == '__main__':
app.run(debug=True)
11. requirements.txt
Flask
torch
transformers
google-cloud-speech
google-cloud-translate
stylegan2_pytorch
Subindo o Projeto
-
Clone o repositório e instale as dependências:
git clone https://github.com/seu-usuario/aurora_project.git cd aurora_project pip install -r requirements.txt
-
Configuração do Google Cloud:
- Crie um projeto no Google Cloud.
- Habilite as APIs de Speech-to-Text e Translation.
- Baixe as credenciais e defina a variável de ambiente
GOOGLE_APPLICATION_CREDENTIALS
:
export GOOGLE_APPLICATION_CREDENTIALS="path/to/your/credentials.json"
-
Execute a aplicação:
python run.py `