A PyTorch implementation of our paper DSNet: A Flexible Detect-to-Summarize Network for Video Summarization by Wencheng Zhu, Jiwen Lu, Jiahao Li, and Jie Zhou. Published in IEEE Transactions on Image Processing.
This project is developed on Ubuntu 16.04 with CUDA 9.0.176.
First, clone this project to your local environment.
git clone https://github.com/li-plus/DSNet.git
Create a virtual environment with python >= 3.6.
virtualenv -p /usr/bin/python3.8 dsnet
. dsnet/bin/activate
Install python dependencies.
pip install -r requirements.txt
Download the pre-processed datasets into datasets/
folder.
mkdir -p datasets/ && cd datasets/
wget https://www.dropbox.com/s/tdknvkpz1jp6iuz/dsnet_datasets.zip
unzip dsnet_datasets.zip
If the Dropbox link is unavailable to you, try downloading from below links.
- (Baidu Cloud) Link: https://pan.baidu.com/s/1LUK2aZzLvgNwbK07BUAQRQ Extraction Code: x09b
- (Google Drive) https://drive.google.com/file/d/11ulsvk1MZI7iDqymw9cfL7csAYS0cDYH/view?usp=sharing
Now the datasets structure should look like
DSNet
└── datasets/
├── eccv16_dataset_ovp_google_pool5.h5
├── eccv16_dataset_summe_google_pool5.h5
├── eccv16_dataset_tvsum_google_pool5.h5
├── eccv16_dataset_youtube_google_pool5.h5
└── readme.txt
To train anchor-based attention model on TVSum and SumMe datasets with canonical settings, run
python train.py anchor-based --model-dir ../models/ab_basic --splits ../splits/tvsum.yml ../splits/summe.yml
To train on augmented and transfer datasets, run
python train.py anchor-based --model-dir ../models/ab_tvsum_aug/ --splits ../splits/tvsum_aug.yml
python train.py anchor-based --model-dir ../models/ab_summe_aug/ --splits ../splits/summe_aug.yml
python train.py anchor-based --model-dir ../models/ab_tvsum_trans/ --splits ../splits/tvsum_trans.yml
python train.py anchor-based --model-dir ../models/ab_summe_trans/ --splits ../splits/summe_trans.yml
To train with LSTM, Bi-LSTM or GCN feature extractor, specify the --base-model
argument as lstm
, bilstm
, or gcn
. For example,
python train.py anchor-based --model-dir ../models/ab_basic --splits ../splits/tvsum.yml ../splits/summe.yml --base-model lstm
Much similar to anchor-based models, to train on canonical TVSum and SumMe, run
python train.py anchor-free --model-dir ../models/af_basic --splits ../splits/tvsum.yml ../splits/summe.yml --nms-thresh 0.4
Note that NMS threshold is set to 0.4 for anchor-free models.
To evaluate your anchor-based models, run
python evaluate.py anchor-based --model-dir ../models/ab_basic/ --splits ../splits/tvsum.yml ../splits/summe.yml
For anchor-free models, remember to specify NMS threshold as 0.4.
python evaluate.py anchor-free --model-dir ../models/af_basic/ --splits ../splits/tvsum.yml ../splits/summe.yml --nms-thresh 0.4
If you want to generate your own splits, use make_split.py
.
To generate a canonical split on TVSum, run
python make_split.py --save-path ../splits_custom/tvsum.yml \
--dataset ../datasets/eccv16_dataset_tvsum_google_pool5.h5
To create an augmented split on TVSum, run
python make_split.py --save-path ../splits_custom/tvsum_aug.yml \
--dataset ../datasets/eccv16_dataset_tvsum_google_pool5.h5 \
--extra-datasets ../datasets/eccv16_dataset_summe_google_pool5.h5 \
../datasets/eccv16_dataset_ovp_google_pool5.h5 \
../datasets/eccv16_dataset_youtube_google_pool5.h5
For a transfer split on TVSum, run
python make_split.py --save-path ../splits_custom/tvsum_trans.yml \
--dataset ../datasets/eccv16_dataset_tvsum_google_pool5.h5 \
--extra-datasets ../datasets/eccv16_dataset_summe_google_pool5.h5 \
../datasets/eccv16_dataset_ovp_google_pool5.h5 \
../datasets/eccv16_dataset_youtube_google_pool5.h5 \
--train-ratio 0
You may also generate splits on SumMe by changing the --dataset
and --extra-dataset
arguments. For more options, run python make_split.py --help
.
Based on the public datasets provided by DR-DSN, we apply KTS algorithm to generate video shots for OVP and YouTube datasets. Note that the pre-processed datasets already contain these video shots. To re-generate video shots, run
python make_shots.py --dataset ../datasets/eccv16_dataset_ovp_google_pool5.h5
python make_shots.py --dataset ../datasets/eccv16_dataset_youtube_google_pool5.h5
We gratefully thank the below open-source repo, which greatly boost our research.
If you find our codes or paper helpful, please consider citing.
@article{zhu2020dsnet,
title={DSNet: A Flexible Detect-to-Summarize Network for Video Summarization},
author={Zhu, Wencheng and Lu, Jiwen and Li, Jiahao and Zhou, Jie},
journal={IEEE Transactions on Image Processing},
year={2020}
}