/busy-quiet-net

[Codes of paper]: Busy-Quiet Video Disentangling for Video Classification

Primary LanguagePythonMIT LicenseMIT

Busy-Quiet Video Disentangling for Video Classification [arXiv]

Prerequisites

Data Preparation

Please refer to TSM repo for the details of data preparation.

Pretrained Models

Coming soon

Because of some modifications of the filenames in our project, many trained models cannot be resumed by the current code. We are re-training the models. By running the training scripts we provided bellow, you should get similar results as stated in the paper.

Training

We provided several examples to train BQN with this repo:

  • To train on Kinetics, you can run the script bellow:
python main_apex.py --modality HP --dataset kinetics --dense_sample --root-model kinetics --arch resnet50 --dist-url "tcp://ip_address:6065"   --dist-backend 'nccl' \
--multiprocessing-distributed  --available_gpus 0,1,2,3 --npb --lr 0.08 --wd 2e-4 --dropout 0.5 --num_segments 16  --batch_size 32 --batch_multiplier 1 \
--lr_type cos --epochs 100 --warmup_epochs 7 -j 28 --gd 20 --ls --suffix 1  --prefix BQN --world-size 16 --rank  0

python main_apex.py --modality HP --dataset kinetics --dense_sample --root-model kinetics --arch x3dm --dist-url "tcp://ip_address:6065"   --dist-backend 'nccl' \
--multiprocessing-distributed  --available_gpus 0,1,2,3 --npb --lr 0.4 --wd 5e-5 --dropout 0.5 --num_segments 16  --batch_size 64 --batch_multiplier 1 \
--lr_type cos --epochs 256 --warmup_epochs 7 -j 28 --gd 20 --ls --suffix 1  --prefix BQN --world-size 4 --rank  0
  • To train on Something-Something V1, you can run the script bellow:
python main_apex.py --modality HP --dataset something --root-model something --arch x3dm --dist-url "tcp://ip_address:6065"   --dist-backend 'nccl' \
--multiprocessing-distributed  --available_gpus 0,1,2,3 --npb --lr 0.2   --wd 5e-5 --dropout 0.5 --num_segments 16  --batch_size 64 --batch_multiplier 1 \
--lr_type cos --epochs 100 --warmup_epochs 7 -j 28 --gd 20 --ls --suffix 1  --prefix BQN --world-size 4 --rank  0

python main_apex.py --modality HP --dataset something --root-model something --arch resnet50 --dist-url "tcp://ip_address:6065"   --dist-backend 'nccl' \
--multiprocessing-distributed  --available_gpus 0,1,2,3 --npb --lr 0.12   --wd 8e-4 --dropout 0.8 --num_segments 16 --batch_size 64 --batch_multiplier 1 \
--lr_type cos --epochs 50 --warmup_epochs 7 -j 28 --gd 20 --ls --suffix 1  --prefix BQN --world-size 4 --rank  0

# Notice that the total batch size is equal to batch_size x batch_multiplier x world_size, and 
# you should scale up the learning rate with batch size. For example, if you use 
# a batch size of 128 you should set learning rate to 0.4.

Test

For example, to test the models, you can run the scripts below. The scripts test on 16-frame setting by running:

# test on kinetics
python test_f.py something --weights=ckpt.pt --test_segments=16 --batch_size=4  -j 10 --test_crops=3  --full_res --dense_sample
# test on Something
python test_f.py something --weights=ckpt.pt --test_segments=16 --batch_size=4  -j 10 --test_crops=3  --full_res --twice_sample

Other Info

References

This repository is built upon the following baseline implementations.

Contact

For any questions, please feel free to open an issue or contact:

Guoxi Huang: gh825@york.ac.uk