Official implementation.
by Xu Qin, Zhilin Wang et al. Peking University and Beijing University of Aeronautics & Astronautics.
To be determined.
- python3
- PyTorch>=1.0
- NVIDIA GPU+CUDA
- numpy
- matplotlib
Dataset website:RESIDE ; Paper arXiv version:[RESIDE: A Benchmark for Single Image Dehazing]
FILE STRUCTURE
FFA-Net
|-- README.md
|-- net
|-- data
|-- RESIDEV0
|-- ITS
|-- hazy
|-- *.png
|-- clear
|-- *.png
|-- OTS
|-- hazy
|-- *.jpg
|-- clear
|-- *.jpg
|-- SOTS
|-- indoor
|-- hazy
|-- *.png
|-- clear
|-- *.png
|-- outdoor
|-- hazy
|-- *.jpg
|-- clear
|-- *.png
Remove annotation from main.py if you want to use tensorboard
or view intermediate predictions
If you have more computing resources, expanding bs
, crop_size
, gps
, blocks
will lead to better results
train network on ITS
dataset
python main.py --net='ffa' --crop --crop_size=240 --blocks=19 --gps=3 --bs=2 --lr=0.0001 --trainset='its_train' --testset='its_test' --steps=500000 --eval_step=5000
train network on OTS
dataset
python main.py --net='ffa' --crop --crop_size=240 --blocks=19 --gps=3 --bs=2 --lr=0.0001 --trainset='ots_train' --testset='ots_test' --steps=500000 --eval_step=5000
Put your images in net/test_imgs/
python test.py