/ALaRM

[ACL 2024] Code for the paper "ALaRM: Align Language Models via Hierarchical Rewards Modeling"

Primary LanguagePythonApache License 2.0Apache-2.0

⏰ALaRM: Align Language Models via Hierarchical Rewards Modeling


This repository hosts the code for the paper ALaRM: Align Language Models via Hierarchical Rewards Modeling.

You can refer to our project page for a quick project overview.

Dependencies

# clone this repo
git clone https://github.com/halfrot/ALaRM.git
cd ALaRM
# set up conda
conda create --name env-alarm python=3.9
conda activate env-alarm
# install packages
pip install -e .
pip install -e ./trl
python -m spacy download en_core_web_sm

Note: For MT task, You also need to install java and add it to PATH.

Usage

Training

  • To run Long-form QA experiments, first download the model checkpoints from google drive, released by FineGrainedRLHF. And place them under ./long-form-QA/model_ckpts folder. Then, run the following command:
accelerate launch --multi_gpu ./long-form-QA/train_ppo.py \
  --save_dir ./long-form-QA/model_ckpts/seed42/hierarchical \
  --sigmoid_shaping --reward_type hierarchical \
  --w_rel 0 --w_fact 1 --w_comp 0 --seed 42 --run_name hierarchical
  • To run MT experiments, make sure you have correctly installed java to run LanguageTool. Run the following command to start training:
accelerate launch --multi_gpu ./MT/train_ppo.py \
  --save_dir ./MT/model_ckpts/seed42/hierarchical \
  --sigmoid_shaping --reward_type hierarchical \
  --w_read 0 --w_grammar 1 --w_confidence 0 --seed 42 --run_name hierarchical

Evaluation

  • To test a model on both tasks, add --test, specify the --save_dir to save result json file, and add --policy_ckpt to specify the model path. You may also change the test batch size by --batch_size. See the example command as follows:
# Long-form QA
accelerate launch --multi_gpu ./long-form-QA/train_ppo.py \
  --save_dir ./long-form-QA/model_generations/seed42/hierarchical.json \
  --sigmoid_shaping --reward_type hierarchical \
  --w_rel 0 --w_fact 1 --w_comp 0 --seed 42 --run_name test_hierarchical \
  --test --policy_ckpt ./long-form-QA/model_ckpts/t5-large-1k-train
# MT
accelerate launch --multi_gpu ./MT/train_ppo.py \
  --save_dir ./MT/model_generations/seed42/hierarchical.json \
  --sigmoid_shaping --reward_type hierarchical \
  --w_read 0 --w_grammar 1 --w_confidence 0 --seed 42 --run_name test_hierarchical \
  --test --policy_ckpt halfrot/sft-mt5-base \
  --batch_size 256
  • Once the result json files are saved in a directory, e.g., ./long-form-QA/model_generations/seed42, you can get their win rates by pairwise comparison using the following command:
# without gpt-3.5-turbo
python ./eval/eval_compare.py --generations_dir ./long-form-QA/model_generations/seed42 \
  --task_type qa
# with gpt-3.5-turbo
python ./eval/eval_compare.py --generations_dir ./long-form-QA/model_generations/seed42 \
  --task_type qa --use_gpt --api_key $YOUR_OPENAI_API_KEY
# randomly select 3000 data points
python ./eval/eval_compare.py --generations_dir ./MT/model_generations/seed42 \
  --task_type mt --use_gpt --api_key $YOUR_OPENAI_API_KEY \
  --max_compare 3000

Citation

If you find our work helpful, please cite as

@article{lai2024alarm,
      title={ALaRM: Align Language Models via Hierarchical Rewards Modeling}, 
      author={Lai, Yuhang and Wang, Siyuan and Liu, Shujun and Huang, Xuanjing and Wei, Zhongyu},
      journal={arXiv preprint arXiv:2403.06754},
      year={2024}
}

Contributors