[Question] Model parameters during finetuning (prints me only mm_projector parameters)
daulettoibazar opened this issue · 1 comments
daulettoibazar commented
Question
Hi @haotian-liu, I am trying to pretrain and finetune llava model on my custom dataset. But during the fine-tuning, when I load projector.bin, LLava model and Image encoder, when i run train.py
with following changes, it only prints the weights of projector (no model weight, no image encoder weights):
total_params = sum(param.numel() for param in model.parameters())
# Total number of trainable parameters
trainable_params = sum(param.numel() for param in model.parameters() if param.requires_grad)
print(f"Total Parameters: {total_params}")
print(f"Trainable Parameters: {trainable_params}")
data_module = make_supervised_data_module(tokenizer=tokenizer,
data_args=data_args)
trainer = LLaVATrainer(model=model,
tokenizer=tokenizer,
args=training_args,
**data_module)
The output is
Total Parameters: 32000000
Trainable Parameters:32000000
Below is my fine tuning script:
deepspeed LLaVA/llava/train/train_mem.py \
--deepspeed "LLaVA/scripts/zero3.json" \
--model_name_or_path "./tmp/model/v1.5_model" \
--version v1 \
--freeze_backbone True \
--data_path "./tmp/data/fv4.json" \
--image_folder ./tmp/data/images \
--vision_tower openai/clip-vit-large-patch14-336 \
--pretrain_mm_mlp_adapter ./tmp/models/v1.5_model/mm_projector.bin \
--mm_projector_type mlp2x_gelu \
--mm_vision_select_layer -2 \
--mm_use_im_start_end False \
--mm_use_im_patch_token False \
--image_aspect_ratio pad \
--group_by_modality_length True \
--bf16 True \
--output_dir ./llava-v1.5-13b_fv4 \
--num_train_epochs 1 \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 1 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 50000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--tf32 True \
--model_max_length 4096 \
--gradient_checkpointing True \
--dataloader_num_workers 4 \
--lazy_preprocess True \
--report_to wandb
Why other weights are not visible here?