This repository contains the implementation of BioGPT: Generative Pre-trained Transformer for Biomedical Text Generation and Mining, by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
- BioGPT-Large model with 1.5B paramters is comming, currently available on PubMedQA task with SOTA perfromance of 81% accuracy. See Question Answering on PubMedQA for evaluation.
- PyTorch version == 1.12.0
- Python version == 3.10
- fairseq version == 0.12.0:
git clone https://github.com/pytorch/fairseq
cd fairseq
git checkout v0.12.0
pip install .
python setup.py build_ext --inplace
cd ..
- Moses
git clone https://github.com/moses-smt/mosesdecoder.git
export MOSES=${PWD}/mosesdecoder
- fastBPE
pip install fastBPE
git clone https://github.com/glample/fastBPE.git
export FASTBPE=${PWD}/fastBPE
cd fastBPE
g++ -std=c++11 -pthread -O3 fastBPE/main.cc -IfastBPE -o fast
- sacremoses
pip install sacremoses
- sklearn
pip install scikit-learn
Remember to set the environment variables MOSES
and FASTBPE
to the path of Moses and fastBPE respetively, as they will be required later.
We provide our pre-trained BioGPT model checkpoint along with fine-tuned checkpoints for downstream tasks
Model | Description | URL |
---|---|---|
BioGPT | Pre-trained BioGPT model checkpoint | link |
BioGPT-QA-PubMedQA-BioGPT | Fine-tuned BioGPT for question answering task on PubMedQA | link |
BioGPT-QA-PubMEDQA-BioGPT-Large | Fine-tuned BioGPT-Large for question answering task on PubMedQA | link |
BioGPT-RE-BC5CDR | Fine-tuned BioGPT for relation extraction task on BC5CDR | link |
BioGPT-RE-DDI | Fine-tuned BioGPT for relation extraction task on DDI | link |
BioGPT-RE-DTI | Fine-tuned BioGPT for relation extraction task on KD-DTI | link |
BioGPT-DC-HoC | Fine-tuned BioGPT for document classification task on HoC | link |
Download them and extract them to the checkpoints
folder of this project.
For example:
mkdir checkpoints
cd checkpoints
wget https://msramllasc.blob.core.windows.net/modelrelease/BioGPT/checkpoints/Pre-trained-BioGPT.tgz
tar -zxvf Pre-trained-BioGPT.tgz
Use pre-trained BioGPT model in your code:
import torch
from fairseq.models.transformer_lm import TransformerLanguageModel
m = TransformerLanguageModel.from_pretrained(
"checkpoints/Pre-trained-BioGPT",
"checkpoint.pt",
"data",
tokenizer='moses',
bpe='fastbpe',
bpe_codes="data/bpecodes",
min_len=100,
max_len_b=1024)
m.cuda()
src_tokens = m.encode("COVID-19 is")
generate = m.generate([src_tokens], beam=5)[0]
output = m.decode(generate[0]["tokens"])
print(output)
Use fine-tuned BioGPT model on KD-DTI for drug-target-interaction in your code:
import torch
from fairseq.models.transformer_lm import TransformerLanguageModel
m = TransformerLanguageModel.from_pretrained(
"checkpoints/RE-DTI-BioGPT",
"checkpoint_avg.pt",
"data/KD-DTI/relis-bin",
tokenizer='moses',
bpe='fastbpe',
bpe_codes="data/bpecodes",
max_len_b=1024,
beam=1)
m.cuda()
src_text="" # input text, e.g., a PubMed abstract
src_tokens = m.encode(src_text)
generate = m.generate([src_tokens], beam=args.beam)[0]
output = m.decode(generate[0]["tokens"])
print(output)
For more downstream tasks, please see below.
See corresponding folder in examples:
BioGPT is MIT-licensed. The license applies to the pre-trained models as well.
This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.
When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.
This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.