关于Repository的疑问和se_resnet50
Closed this issue · 1 comments
my-hello-world commented
感谢您的项目**。有些问题想请教。
- 您说到:
Caffe. SE-mudolues are integrated with a modificated ResNet-50 using a stride 2 in the 3x3 convolution instead of the first 1x1 convolution which obtains better performance: Repository.
这个我去看了他的(https://github.com/shicai/SENet-Caffe).prototxt文件,并没有改变啊.
- 另外,关于se_resnet50,我觉得两个FC的参数太大了,想换成两个1*1卷积,您有试过吗?和fc比精度怎样呢?
盼望回复~
感谢!
hujie-frank commented
- For instance, the layer named "conv3_1/x2" in https://github.com/shicai/SENet-Caffe is a convolutional layer with stride 2, but in original resnet-50, the downsampling is conducted at the layer 'conv3_1/x1'.
- Here, using two FC layers and two convolutional layers are exactly equivalent. In our implementation, we employ convolutional layers.