- This is CLSS baseline implementation
- Currently, it includes MiB, PLOP, DKD.
- The main implementation is based on dataset VOC2012 and ResNet-101 backbone.
- ADE 20K dataset is not supported currently, but will be supported soon.
- CUDA 11.1
- python 3.8
- The shell code for setting environment is in
scripts/env_create.sh
- The shell code for training is in
./z_exp_individual_cmd
./train_{dataset}_{scenarios}_{method}.sh
For examples, ./train_voc_10-1_DKD.sh
For MiB, PLOP which require 2 GPUs, please pass the argument GPU_NUMBER (ex 0,1) to .sh file
- The configuration for each method is in 'configs/config_{dataset}_{method}.yaml'
- The results are updated in wandb
coonfig | MiB | PLOP | DKD | STAR |
---|---|---|---|---|
epoch | 30 | 30 | 60 | 60 |
lr | 0.01 / 0.001 | 0.01 / 0.001 | 0.001/ 0.0001 | 0.001/ 0.0001 |
|
UnCE | 1 | 2 / 1 | 4 |
Optimizer | SGD (momentum 0.9, wd 1e-4, nesterov True) | SGD (momentum 0.9, wd 1e-4) | SGD (momentum 0.9) | Adam (momentum 0.9) |
|
10 (lkd) | 1 (pod) | 5 / 5 (kd / dkd) | 5 / 0.05 (pkd/cont) |
batch size | 24 | 24 | 32 | 24 |
lr Schedular | PolyLR | PolyLR | PolyLR | |
GPUs | RTX titian x 2 | ? x 2 | A5000 x 4 | RTX 3090 x 2 |
augmentation | same as [1] |
config MiB PLOP DKD STAR
epoch 60 60 100 100
lr 0.01 / 0.001 0.01 / 0.001 0.0025 / 0.00025 0.00025 / 0.000025
- This code is based on DKD (https://github.com/cvlab-yonsei/DKD#decomposed-knowledge-distillation-for-class-incremental-semantic-segmentation) codespaces.
- All implementations have been borrowed from existing code implementations (MiB, DKD, PLOP)