-
Obtained 1922 correction labels.
- Among which 180 were duplicates.
- Resulting with 1742 correction labels.
- Labels were distributed as follows:
- Chicken house - 576
- Built - 387
- Field - 338
- Tree Canopy - 275
- Water - 166
-
Generate tuned model
- Command ran:
python generate_tuned_model_v2.py --in_geo_path ../notebooks/all_corrections_no_dups.geojson --in_model_path ../landcover-old/web_tool/data/naip_autoencoder.h5 --in_tile_path ../landcover-old/web_tool/tiles/m_3807537_ne_18_1_20170611.mrf --out_model_path ./naip_autoencoder_tuned_uneven.h5 --num_classes 2 --gpu 1
python generate_tuned_model_v2.py --in_geo_path ../notebooks/all_corrections_no_dups.geojson --in_model_path ../landcover-old/web_tool/data/naip_autoencoder.h5 --in_tile_path ../landcover-old/web_tool/tiles/m_3807537_ne_18_1_20170611.mrf --out_model_path ./naip_autoencoder_tuned_even.h5 --num_classes 2 --gpu 1
python generate_tuned_model_v2.py --in_geo_path ../notebooks/all_corrections_no_dups.geojson --in_model_path ../landcover-old/web_tool/data/naip_demo_model.h5 --in_tile_path ../landcover-old/web_tool/tiles/m_3807537_ne_18_1_20170611.mrf --out_model_path ./naip_demo_tuned_uneven.h5 --num_classes 2 --gpu 1
python generate_tuned_model_v2.py --in_geo_path ../notebooks/all_corrections_no_dups.geojson --in_model_path ../landcover-old/web_tool/data/naip_demo_model.h5 --in_tile_path ../landcover-old/web_tool/tiles/m_3807537_ne_18_1_20170611.mrf --out_model_path ./naip_demo_tuned_even.h5 --num_classes 2 --gpu 1
-
Sampling
-
For even sampling: 150 samples each -> 750 total
-
For uneven sampling: 375 Chicken houses, 375 random samples from the other classes.
Example distribution of uneven sampling:
4.0 375 3.0 129 2.0 123 1.0 73 0.0 50
Example distribution of even sampling:
4.0 150 3.0 150 2.0 150 1.0 150 0.0 150
-
j-csc/landcover_scripts
Scripts for landcover project - https://github.com/microsoft/landcover
Jupyter Notebook