This repository contains a project for detecting anomalies in network traffic using machine learning-based algorithms. The project demonstrates the application of various machine learning models to identify unusual patterns or anomalies in network traffic, which could be indicative of security threats such as intrusions or malware activity.
Network Anomaly Detection System
Enterprise-Grade Network Anomaly Detection System
Leveraging Machine Learning & OMNeT++ for Advanced Network Security
🎯 Overview
A cutting-edge network anomaly detection system that combines advanced machine learning algorithms with OMNeT++ simulation capabilities. Our system focuses on robust data collection and analysis, with a planned evolution towards real-time detection and dynamic adaptation capabilities.
System Architecture
graph TD
A[Data Collection Layer] --> B[Preprocessing Engine]
B --> C[Feature Extraction]
C --> D[ML Pipeline]
D --> E[Anomaly Detection]
subgraph "Data Processing"
B --> F[Data Cleaning]
F --> G[Feature Engineering]
G --> H[Data Validation]
end
subgraph "ML Components"
D --> I[Model Training]
I --> J[Model Validation]
J --> K[Model Deployment]
end
classDynamicNetworkDetector:
""" Advanced network anomaly detection with dynamic adaptation capabilities. Supports real-time model updates and network-agnostic detection. """def__init__(self, config: Dict[str, Any]):
self.base_model=self._initialize_model(config)
self.network_profiles: Dict[str, NetworkProfile] = {}
self.adaptation_metrics: List[AdaptationMetric] = []
self.feature_extractors: Dict[str, FeatureExtractor] = {}
asyncdefadapt_to_network(self, network_type: str) ->bool:
""" Dynamically adjust model parameters based on network characteristics. Args: network_type: Type of network to adapt to Returns: bool: Success status of adaptation """try:
profile=self.network_profiles.get(network_type)
ifnotprofile:
profile=awaitself._create_network_profile(network_type)
returnawaitself._adapt_model_parameters(profile)
exceptAdaptationErrorase:
logger.error(f"Adaptation failed: {e}")
returnFalseasyncdefupdate_model_realtime(self, new_data: NetworkData) ->ModelUpdateResult:
""" Update model in real-time with streaming network data. Args: new_data: New network data for model update Returns: ModelUpdateResult: Results of model update """validation_result=awaitself._validate_data(new_data)
ifvalidation_result.is_valid:
returnawaitself._update_model(new_data)
returnModelUpdateResult(success=False, error=validation_result.error)