'astra_cuda' back-end not available
tibuch opened this issue ยท 3 comments
Hi,
I wanted to use dival
to get access to your standard datasets (ellipses
and lodopab
).
I installed divial
via pip install dival
.
Then I executed the following lines:
import dival
ellipses = dival.get_standard_dataset('ellipses')
And got this error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-2-6beeed4e0fd9> in <module>
----> 1 ellipses = dival.get_standard_dataset('ellipses')
~/Programs/miniconda3/envs/pI/lib/python3.7/site-packages/dival/datasets/standard.py in get_standard_dataset(name, **kwargs)
130
131 impl = kwargs.pop('impl', 'astra_cuda')
--> 132 ray_trafo = odl.tomo.RayTransform(space, geometry, impl=impl)
133
134 def get_reco_ray_trafo(**kwargs):
~/Programs/miniconda3/envs/pI/lib/python3.7/site-packages/odl/tomo/operators/ray_trafo.py in __init__(self, domain, geometry, **kwargs)
381 super(RayTransform, self).__init__(
382 reco_space=domain, proj_space=range, geometry=geometry,
--> 383 variant='forward', **kwargs)
384
385 def _call_real(self, x_real, out_real):
~/Programs/miniconda3/envs/pI/lib/python3.7/site-packages/odl/tomo/operators/ray_trafo.py in __init__(self, reco_space, geometry, variant, **kwargs)
150 raise ValueError('`impl` {!r} not understood'.format(impl_in))
151 if impl not in _AVAILABLE_IMPLS:
--> 152 raise ValueError('{!r} back-end not available'.format(impl))
153
154 # Cache for input/output arrays of transforms
ValueError: 'astra_cuda' back-end not available
Would you recommend to download the data via zenodo instead?
Cheers
Hi,
the error is about the backend implementation for the radon transform. The default is 'astra_cuda'
, which requires both the astra-toolbox being installed and a cuda-enabled GPU. For testing, you can pass the option impl='skimage'
to get_standard_dataset
. But for real use, this will probably be too slow.If you are using anaconda, the latest development version of astra can be installed with
conda install astra-toolbox -c astra-toolbox/label/dev
Then the backends 'astra_cpu'
and 'astra_cuda'
should become available ('astra_cuda'
only if cuda is available).
As for downloading the data, it should not be related to this issue. The automated download using dival usually works, however users have reported robustness issues, which may occur especially if the network connection to the zenodo.org servers is weak.
Best regards,
Johannes
Thank you. Works with the additional option.
Personally it would have helped me if your answer would be part of the README.md
.
Looking forward to play around with the datasets!
Great, thanks for the feedback, will add it to the README!