Proofs for spliting auxiliar theorems for agda-metis
jonaprieto opened this issue · 0 comments
jonaprieto commented
In Negation module of Theorems folder, I postulated:
postulate
¬⇔-to-⇒¬∧⇒¬
: ∀ {Γ} {φ₁ φ₂}
→ Γ ⊢ ¬ (φ₁ ⇔ φ₂)
→ Γ ⊢ (φ₁ ⇒ φ₂) ∧ (φ₂ ⇒ ¬ φ₁)
We need the proof because is used in agda-metis to split goals see jonaprieto/agda-metis#9.