joshjchayes/TransitFit

FileNotFoundError: [Errno 2] No such file or directory

Closed this issue · 14 comments

Hi there,

I try to fit a lightcurve with Transitfit. For the moment I just want to test the library in basic mode.

I have the different files needed for this. When I run:

results = run_retrieval('input_data.csv', 'priors.csv', 'filter_profiles.csv')

The model fit the different parameters but, when it's time to generate the output I obtain this:

Auto mode detect has set 'all' mode
Priors:
Limb darkening model: quadratic
n telescopes: 1
n filters: 1
n epochs: 1

P:	t -	f -	e -	Gaussian - mean: 0.7 - stdev: 0.001
t0:	t -	f -	e -	Gaussian - mean: 0.0 - stdev: 0.007
a:	t -	f -	e -	Gaussian - mean: 1.1 - stdev: 0.5
rp:	t -	f 0	e -	Uniform - min: 0.023 - max: 0.03
inc:	t -	f -	e -	Gaussian - mean: 90.0 - stdev: 1.2
ecc:	t -	f -	e -	Fixed - value: 0.0
w:	t -	f -	e -	Gaussian - mean: 90.0 - stdev: 1.2
q0:	t -	f 0	e -	Uniform - min: 0 - max: 1
q1:	t -	f 0	e -	Uniform - min: 0 - max: 1
norm:	t 0	f 0	e 0	Uniform - min: 0.9995734727623046 - max: 1.0006452864728834
d0_0:	t 0	f 0	e 0	Uniform - min: -1000 - max: 1000
Total 12 fitting parameters
9631it [03:15, 49.31it/s, +300 | bound: 108 | nc: 1 | ncall: 527701 | eff(%):  1.882 | loglstar:   -inf < -66.518 <    inf | logz: -97.405 +/-  0.445 | dlogz:  0.001 >  0.309]      

Best fit results:
P:		 0.700528 ± 6.3e-05
t0:		 -0.004506 ± 0.000278
a:		 1.005755 ± 0.010264
inc:		 90.263092 ± 0.044109
w:		 88.490487 ± 0.342609
rp_0:		 0.023001 ± 0.000115
q0_0:		 0.19850631007743372 ± 0.026060032214727174
q0_0:		 0.16173804167783726 ± 0.053346277447012806
q0_0:		 0.5211126295384808 ± 0.024102758754886804
q1_0:		 0.33411154802751203 ± 0.03271570165737821
d0_0:		 3.1e-05 ± 4.8e-05
norm_t0_f0_e0:	 0.999927 ± 4e-06
chi2:		 66.51814
red chi2:	 1.18782
Saving full results...
Extracting results dict
Plotting batch 0 samples to ./plots/unfolded/batch_0_samples.png
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
Calculating best values for this run
Combining results dicts
Exception raised whilst saving results:
index 1 is out of bounds for axis 0 with size 1
Unable to save results
Initialising best fit model
  File "/Users/Library/Python/3.8/lib/python/site-packages/transitfit/retriever.py", line 349, in _run_full_retrieval
    output_handler.save_results([results], [priors], [lightcurves],
  File "/Users/Library/Python/3.8/lib/python/site-packages/transitfit/output_handler.py", line 326, in save_results
    best_vals, combined_results = self.get_best_vals(results_dicts, fit_ld)
  File "/Users/Library/Python/3.8/lib/python/site-packages/transitfit/output_handler.py", line 440, in get_best_vals
    best_vals, combined_dict = self.add_best_u(best_vals, combined_dict)
  File "/Users/Library/Python/3.8/lib/python/site-packages/transitfit/output_handler.py", line 529, in add_best_u
    filter_q[b,0,qi] = combined_dict[q][i][b][0]
---------------------------------------------------------------------------
FileNotFoundError                         Traceback (most recent call last)
<ipython-input-2-bb8b26a3a48f> in <module>
----> 1 results = run_retrieval('input_data.csv', 'priors.csv', 'filter_profiles.csv', plot=True)

~/Library/Python/3.8/lib/python/site-packages/transitfit/_pipeline.py in run_retrieval(data_files, priors, filter_info, detrending_list, limb_darkening_model, ld_fit_method, fitting_mode, max_batch_parameters, batch_overlap, host_T, host_logg, host_z, host_r, nlive, dlogz, maxiter, maxcall, dynesty_sample, dynesty_bounding, normalise, detrend, results_output_folder, final_lightcurve_folder, summary_file, full_output_file, plot_folder, plot, marker_color, line_color, ldtk_cache, n_ld_samples, do_ld_mc, data_skiprows, allow_ttv, filter_delimiter, detrending_limits, bin_data, cadence, binned_color, walks, slices)
    318 
    319     # Run the retrieval!
--> 320     results = retriever.run_retrieval(ld_fit_method, fitting_mode,
    321                                       max_batch_parameters, maxiter, maxcall,
    322                                       dynesty_sample, nlive, dlogz, plot,

~/Library/Python/3.8/lib/python/site-packages/transitfit/retriever.py in run_retrieval(self, ld_fit_method, fitting_mode, max_parameters, maxiter, maxcall, sample, nlive, dlogz, plot, output_folder, lightcurve_folder, summary_file, full_output_file, plot_folder, marker_color, line_color, bound, normalise, detrend, overlap, bin_data, cadence, binned_color, walks, slices)
    646         output_handler = OutputHandler(self.all_lightcurves, self._full_prior, self.host_r)
    647 
--> 648         output_handler.save_complete_results(fitting_mode, self._full_prior, output_folder, summary_file)
    649 
    650         output_handler.save_final_light_curves(self.all_lightcurves, self._full_prior, lightcurve_folder)

~/Library/Python/3.8/lib/python/site-packages/transitfit/output_handler.py in save_complete_results(self, mode, global_prior, output_folder, summary_file)
    261         Once all batches etc are run, collates all results and saves to csv
    262         '''
--> 263         _ = self._initialise_best_model(mode, global_prior, output_folder, summary_file)
    264 
    265         print('Saving final results')

~/Library/Python/3.8/lib/python/site-packages/transitfit/output_handler.py in _initialise_best_model(self, mode, global_prior, output_folder, summary_file)
    592 
    593         # First use the top-level output
--> 594         top_output = pd.read_csv(os.path.join(output_folder, summary_file))
    595 
    596         for i, row in top_output.iterrows():

~/Library/Python/3.8/lib/python/site-packages/pandas/io/parsers.py in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, dialect, error_bad_lines, warn_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options)
    608     kwds.update(kwds_defaults)
    609 
--> 610     return _read(filepath_or_buffer, kwds)
    611 
    612 

~/Library/Python/3.8/lib/python/site-packages/pandas/io/parsers.py in _read(filepath_or_buffer, kwds)
    460 
    461     # Create the parser.
--> 462     parser = TextFileReader(filepath_or_buffer, **kwds)
    463 
    464     if chunksize or iterator:

~/Library/Python/3.8/lib/python/site-packages/pandas/io/parsers.py in __init__(self, f, engine, **kwds)
    817             self.options["has_index_names"] = kwds["has_index_names"]
    818 
--> 819         self._engine = self._make_engine(self.engine)
    820 
    821     def close(self):

~/Library/Python/3.8/lib/python/site-packages/pandas/io/parsers.py in _make_engine(self, engine)
   1048             )
   1049         # error: Too many arguments for "ParserBase"
-> 1050         return mapping[engine](self.f, **self.options)  # type: ignore[call-arg]
   1051 
   1052     def _failover_to_python(self):

~/Library/Python/3.8/lib/python/site-packages/pandas/io/parsers.py in __init__(self, src, **kwds)
   1865 
   1866         # open handles
-> 1867         self._open_handles(src, kwds)
   1868         assert self.handles is not None
   1869         for key in ("storage_options", "encoding", "memory_map", "compression"):

~/Library/Python/3.8/lib/python/site-packages/pandas/io/parsers.py in _open_handles(self, src, kwds)
   1360         Let the readers open IOHanldes after they are done with their potential raises.
   1361         """
-> 1362         self.handles = get_handle(
   1363             src,
   1364             "r",

~/Library/Python/3.8/lib/python/site-packages/pandas/io/common.py in get_handle(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)
    640                 errors = "replace"
    641             # Encoding
--> 642             handle = open(
    643                 handle,
    644                 ioargs.mode,

FileNotFoundError: [Errno 2] No such file or directory: './output_parameters/summary_output.csv'

I just use the parameters by default so... How can I fix this?

Best,

C.

After investigation, I found that the problem isn't located at the place described below. But, in the _run_full_retrieval function in the file retriever.py which call the function save_results function located in the output_handler.py file. I obtained this error:

Exception raised whilst saving results:
index 1 is out of bounds for axis 0 with size 1
Unable to save results

Hi Cristophe

Thanks for highlighting this issue.

Can you let me know what version of transitfit you are using? Run transitfit.__version__ to see. Have you installed this from PyPi or direct from the GitHub?

Hi,

I'm currently using version 2.2.4 downloaded and installed from PyPI via pip install.

Hi Cristophe,
Thanks, I'm on it.
While I'm tracing this back, can I suggest that you try including fitting_mode='batched' into your run_retrieval call? This should get around the issue before I get a fix out.

Hi, I tried your solution but in fact I obtain this error:

Total 12 fitting parameters
10357it [03:07, 55.35it/s, +300 | bound: 111 | nc: 1 | ncall: 564377 | eff(%):  1.888 | loglstar:   -inf < -66.228 <    inf | logz: -99.528 +/-  0.463 | dlogz:  0.001 >  0.309]     
Extracting results dict
Calculating best values for this run
Combining results dicts

---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
<ipython-input-14-e0bb310848d9> in <module>
----> 1 results = run_retrieval('input_data.csv', 'priors.csv', 'filter_profiles.csv', plot=True, fitting_mode='batched')

~/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/_pipeline.py in run_retrieval(data_files, priors, filter_info, detrending_list, limb_darkening_model, ld_fit_method, fitting_mode, max_batch_parameters, batch_overlap, host_T, host_logg, host_z, host_r, nlive, dlogz, maxiter, maxcall, dynesty_sample, dynesty_bounding, normalise, detrend, results_output_folder, final_lightcurve_folder, summary_file, full_output_file, plot_folder, plot, marker_color, line_color, ldtk_cache, n_ld_samples, do_ld_mc, data_skiprows, allow_ttv, filter_delimiter, detrending_limits, bin_data, cadence, binned_color, walks, slices)
    318 
    319     # Run the retrieval!
--> 320     results = retriever.run_retrieval(ld_fit_method, fitting_mode,
    321                                       max_batch_parameters, maxiter, maxcall,
    322                                       dynesty_sample, nlive, dlogz, plot,

~/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/retriever.py in run_retrieval(self, ld_fit_method, fitting_mode, max_parameters, maxiter, maxcall, sample, nlive, dlogz, plot, output_folder, lightcurve_folder, summary_file, full_output_file, plot_folder, marker_color, line_color, bound, normalise, detrend, overlap, bin_data, cadence, binned_color, walks, slices)
    630             batches = self._get_non_folding_batches(self.all_lightcurves, max_parameters, detrend, normalise, overlap)
    631 
--> 632             results =  self._run_batched_retrieval(self.all_lightcurves, batches, ld_fit_method,detrend,
    633                     normalise, maxiter, maxcall, sample, nlive, dlogz, False,
    634                     False, None, None, output_folder, summary_file,

~/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/retriever.py in _run_batched_retrieval(self, lightcurves, batches, ld_fit_method, detrend, normalise, maxiter, maxcall, sample, nlive, dlogz, full_return, folded, folded_P, folded_t0, output_folder, summary_file, full_output_file, lightcurve_folder, plot, plot_folder, marker_color, line_color, bound, filter_idx, walks, slices)
    407             all_lightcurves.append(batch_lightcurves)
    408 
--> 409             output_handler._quicksave_result(results, batch_prior, batch_lightcurves, output_folder, filter_idx, bi)
    410 
    411         # Make outputs etc

~/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/output_handler.py in _quicksave_result(self, results, priors, lightcurves, base_output_path, filter, batch)
    676         '''
    677         result_dict = self.get_results_dict(results, priors, lightcurves)
--> 678         result_dict, _ = self.get_best_vals([result_dict], priors.fit_ld)
    679         base_fname = ''
    680         if filter is not None:

~/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/output_handler.py in get_best_vals(self, results_dicts, priors, fit_ld, return_combined)
    439         # Limb darkening bits
    440         if fit_ld:
--> 441             best_vals, combined_dict = self.add_best_u(best_vals, combined_dict)
    442         if return_combined:
    443             return best_vals, combined_dict

~/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/output_handler.py in add_best_u(self, best_dict, combined_dict)
    528                 for b in range(n_batches):
    529                     for qi, q in enumerate(self.ld_coeffs):
--> 530                         filter_q[b,0,qi] = combined_dict[q][i][b][0]
    531                         filter_q[b,1,qi] = combined_dict[q][i][b][-1]
    532 

IndexError: index 1 is out of bounds for axis 0 with size 1

Hi Christophe,

I've identified the bug and have a fix which I should be releasing with a code update either later today or tomorrow.

Hi, @joshjchayes do you have released the code?

Hi @Christophe-pere, this issue should be fixed as of version 2.2.5, which is now available on PyPi.

Thanks!

Hi @joshjchayes

Thanks for the new version but... I still have the error in normal mode and with fitting_mode='batched' when using the run_retrieval function.

import transitfit
transitfit.__version__
'2.2.5'

After that:

from transitfit import run_retrieval

results = run_retrieval('input_data.csv', 'priors.csv', 'filter_profiles.csv', plot=True, fitting_mode='batched')

The result:

0it [00:00, ?it/s]
Batch 1 of 1
Priors:
Limb darkening model: quadratic
n telescopes: 1
n filters: 1
n epochs: 1
P:	t -	f -	e -	Gaussian - mean: 0.7 - stdev: 0.001
t0:	t -	f -	e -	Gaussian - mean: 0.0 - stdev: 0.007
a:	t -	f -	e -	Gaussian - mean: 1.1 - stdev: 0.5
rp:	t -	f 0	e -	Uniform - min: 0.023 - max: 0.03
inc:	t -	f -	e -	Gaussian - mean: 90.0 - stdev: 1.2
ecc:	t -	f -	e -	Fixed - value: 0.0
w:	t -	f -	e -	Gaussian - mean: 90.0 - stdev: 1.2
q0:	t -	f 0	e -	Uniform - min: 0 - max: 1
q1:	t -	f 0	e -	Uniform - min: 0 - max: 1
norm:	t 0	f 0	e 0	Uniform - min: 0.9995734727623046 - max: 1.0006452864728834
d0_0:	t 0	f 0	e 0	Uniform - min: -1000 - max: 1000
Total 12 fitting parameters
10084it [03:23, 49.43it/s, +300 | bound: 106 | nc: 1 | ncall: 567381 | eff(%):  1.830 | loglstar:   -inf < -58.499 <    inf | logz: -90.932 +/-  0.452 | dlogz:  0.001 >  0.309]     
Extracting results dict
Calculating best values for this run
Combining results dicts
---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
<ipython-input-4-e0bb310848d9> in <module>
----> 1 results = run_retrieval('input_data.csv', 'priors.csv', 'filter_profiles.csv', plot=True, fitting_mode='batched')

~/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/_pipeline.py in run_retrieval(data_files, priors, filter_info, detrending_list, limb_darkening_model, ld_fit_method, fitting_mode, max_batch_parameters, batch_overlap, host_T, host_logg, host_z, host_r, nlive, dlogz, maxiter, maxcall, dynesty_sample, dynesty_bounding, normalise, detrend, results_output_folder, final_lightcurve_folder, summary_file, full_output_file, plot_folder, plot, marker_color, line_color, ldtk_cache, n_ld_samples, do_ld_mc, data_skiprows, allow_ttv, filter_delimiter, detrending_limits, bin_data, cadence, binned_color, walks, slices)
    318 
    319     # Run the retrieval!
--> 320     results = retriever.run_retrieval(ld_fit_method, fitting_mode,
    321                                       max_batch_parameters, maxiter, maxcall,
    322                                       dynesty_sample, nlive, dlogz, plot,

~/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/retriever.py in run_retrieval(self, ld_fit_method, fitting_mode, max_parameters, maxiter, maxcall, sample, nlive, dlogz, plot, output_folder, lightcurve_folder, summary_file, full_output_file, plot_folder, marker_color, line_color, bound, normalise, detrend, overlap, bin_data, cadence, binned_color, walks, slices)
    628             batches = self._get_non_folding_batches(self.all_lightcurves, max_parameters, detrend, normalise, overlap)
    629 
--> 630             results =  self._run_batched_retrieval(self.all_lightcurves, batches, ld_fit_method,detrend,
    631                     normalise, maxiter, maxcall, sample, nlive, dlogz, False,
    632                     False, None, None, output_folder, summary_file,

~/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/retriever.py in _run_batched_retrieval(self, lightcurves, batches, ld_fit_method, detrend, normalise, maxiter, maxcall, sample, nlive, dlogz, full_return, folded, folded_P, folded_t0, output_folder, summary_file, full_output_file, lightcurve_folder, plot, plot_folder, marker_color, line_color, bound, filter_idx, walks, slices)
    405             all_lightcurves.append(batch_lightcurves)
    406 
--> 407             output_handler._quicksave_result(results, batch_prior, batch_lightcurves, output_folder, filter_idx, bi)
    408 
    409         # Make outputs etc

~/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/output_handler.py in _quicksave_result(self, results, priors, lightcurves, base_output_path, filter, batch)
    675         '''
    676         result_dict = self.get_results_dict(results, priors, lightcurves)
--> 677         result_dict, _ = self.get_best_vals([result_dict], priors.fit_ld)
    678         base_fname = ''
    679         if filter is not None:

~/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/output_handler.py in get_best_vals(self, results_dicts, priors, fit_ld, return_combined)
    438         # Limb darkening bits
    439         if fit_ld:
--> 440             best_vals, combined_dict = self.add_best_u(best_vals, combined_dict)
    441         if return_combined:
    442             return best_vals, combined_dict

~/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/output_handler.py in add_best_u(self, best_dict, combined_dict)
    527                 for b in range(n_batches):
    528                     for qi, q in enumerate(self.ld_coeffs):
--> 529                         filter_q[b,0,qi] = combined_dict[q][i][b][0]
    530                         filter_q[b,1,qi] = combined_dict[q][i][b][-1]
    531 

IndexError: index 1 is out of bounds for axis 0 with size 1

Without the fitting_mode:

results = run_retrieval('input_data.csv', 'priors.csv', 'filter_profiles.csv', plot=True)

The result:

133it [00:00, 1325.90it/s, bound: 0 | nc: 1 | ncall: 489 | eff(%): 27.198 | loglstar:   -inf <   -inf <    inf | logz:   -inf +/-    nan | dlogz:    inf >  0.309]
Auto mode detect has set 'all' mode
Priors:
Limb darkening model: quadratic
n telescopes: 1
n filters: 1
n epochs: 1
P:	t -	f -	e -	Gaussian - mean: 0.7 - stdev: 0.001
t0:	t -	f -	e -	Gaussian - mean: 0.0 - stdev: 0.007
a:	t -	f -	e -	Gaussian - mean: 1.1 - stdev: 0.5
rp:	t -	f 0	e -	Uniform - min: 0.023 - max: 0.03
inc:	t -	f -	e -	Gaussian - mean: 90.0 - stdev: 1.2
ecc:	t -	f -	e -	Fixed - value: 0.0
w:	t -	f -	e -	Gaussian - mean: 90.0 - stdev: 1.2
q0:	t -	f 0	e -	Uniform - min: 0 - max: 1
q1:	t -	f 0	e -	Uniform - min: 0 - max: 1
norm:	t 0	f 0	e 0	Uniform - min: 0.9995734727623046 - max: 1.0006452864728834
d0_0:	t 0	f 0	e 0	Uniform - min: -1000 - max: 1000
Total 12 fitting parameters
9184it [02:49, 54.12it/s, +300 | bound: 96 | nc: 1 | ncall: 489329 | eff(%):  1.938 | loglstar:   -inf < -64.242 <    inf | logz: -93.582 +/-  0.436 | dlogz:  0.001 >  0.309]      

Best fit results:
P:		 0.699295 ± 0.000955
t0:		 0.003133 ± 0.002131
a:		 1.040423 ± 0.02331
inc:		 91.43354 ± 1.187391
w:		 89.945509 ± 0.424187
rp_0:		 0.024026 ± 0.000172
q0_0:		 0.6428194541139004 ± 0.07900176321237204
q0_0:		 0.04003098812817056 ± 0.1744323109135007
q0_0:		 0.0616044607761707 ± 0.009944088876804502
q1_0:		 0.050051337278037886 ± 0.02233275967089502
d0_0:		 1.1e-05 ± 4.5e-05
norm_t0_f0_e0:	 0.999959 ± 2.5e-05
chi2:		 64.24202
red chi2:	 1.14718
Saving full results...
Extracting results dict
Plotting batch 0 samples to ./plots/unfolded/batch_0_samples.png
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
Calculating best values for this run
Combining results dicts
Exception raised whilst saving results:
index 1 is out of bounds for axis 0 with size 1
Unable to save results
Initialising best fit model
  File "/Users/gen06846/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/retriever.py", line 349, in _run_full_retrieval
    output_handler.save_results([results], [priors], [lightcurves],
  File "/Users/gen06846/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/output_handler.py", line 326, in save_results
    best_vals, combined_results = self.get_best_vals(results_dicts, fit_ld)
  File "/Users/gen06846/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/output_handler.py", line 440, in get_best_vals
    best_vals, combined_dict = self.add_best_u(best_vals, combined_dict)
  File "/Users/gen06846/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/output_handler.py", line 529, in add_best_u
    filter_q[b,0,qi] = combined_dict[q][i][b][0]
---------------------------------------------------------------------------
FileNotFoundError                         Traceback (most recent call last)
<ipython-input-5-7a751e249084> in <module>
----> 1 results = run_retrieval('input_data.csv', 'priors.csv', 'filter_profiles.csv', plot=True)#, fitting_mode='batched')

~/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/_pipeline.py in run_retrieval(data_files, priors, filter_info, detrending_list, limb_darkening_model, ld_fit_method, fitting_mode, max_batch_parameters, batch_overlap, host_T, host_logg, host_z, host_r, nlive, dlogz, maxiter, maxcall, dynesty_sample, dynesty_bounding, normalise, detrend, results_output_folder, final_lightcurve_folder, summary_file, full_output_file, plot_folder, plot, marker_color, line_color, ldtk_cache, n_ld_samples, do_ld_mc, data_skiprows, allow_ttv, filter_delimiter, detrending_limits, bin_data, cadence, binned_color, walks, slices)
    318 
    319     # Run the retrieval!
--> 320     results = retriever.run_retrieval(ld_fit_method, fitting_mode,
    321                                       max_batch_parameters, maxiter, maxcall,
    322                                       dynesty_sample, nlive, dlogz, plot,

~/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/retriever.py in run_retrieval(self, ld_fit_method, fitting_mode, max_parameters, maxiter, maxcall, sample, nlive, dlogz, plot, output_folder, lightcurve_folder, summary_file, full_output_file, plot_folder, marker_color, line_color, bound, normalise, detrend, overlap, bin_data, cadence, binned_color, walks, slices)
    646         output_handler = OutputHandler(self.all_lightcurves, self._full_prior, self.host_r)
    647 
--> 648         output_handler.save_complete_results(fitting_mode, self._full_prior, output_folder, summary_file)
    649 
    650         output_handler.save_final_light_curves(self.all_lightcurves, self._full_prior, lightcurve_folder)

~/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/output_handler.py in save_complete_results(self, mode, global_prior, output_folder, summary_file)
    261         Once all batches etc are run, collates all results and saves to csv
    262         '''
--> 263         _ = self._initialise_best_model(mode, global_prior, output_folder, summary_file)
    264 
    265         print('Saving final results')

~/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/output_handler.py in _initialise_best_model(self, mode, global_prior, output_folder, summary_file)
    592 
    593         # First use the top-level output
--> 594         top_output = pd.read_csv(os.path.join(output_folder, summary_file))
    595 
    596         for i, row in top_output.iterrows():

~/anaconda3/envs/QML/lib/python3.9/site-packages/pandas/io/parsers.py in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, dialect, error_bad_lines, warn_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options)
    608     kwds.update(kwds_defaults)
    609 
--> 610     return _read(filepath_or_buffer, kwds)
    611 
    612 

~/anaconda3/envs/QML/lib/python3.9/site-packages/pandas/io/parsers.py in _read(filepath_or_buffer, kwds)
    460 
    461     # Create the parser.
--> 462     parser = TextFileReader(filepath_or_buffer, **kwds)
    463 
    464     if chunksize or iterator:

~/anaconda3/envs/QML/lib/python3.9/site-packages/pandas/io/parsers.py in __init__(self, f, engine, **kwds)
    817             self.options["has_index_names"] = kwds["has_index_names"]
    818 
--> 819         self._engine = self._make_engine(self.engine)
    820 
    821     def close(self):

~/anaconda3/envs/QML/lib/python3.9/site-packages/pandas/io/parsers.py in _make_engine(self, engine)
   1048             )
   1049         # error: Too many arguments for "ParserBase"
-> 1050         return mapping[engine](self.f, **self.options)  # type: ignore[call-arg]
   1051 
   1052     def _failover_to_python(self):

~/anaconda3/envs/QML/lib/python3.9/site-packages/pandas/io/parsers.py in __init__(self, src, **kwds)
   1865 
   1866         # open handles
-> 1867         self._open_handles(src, kwds)
   1868         assert self.handles is not None
   1869         for key in ("storage_options", "encoding", "memory_map", "compression"):

~/anaconda3/envs/QML/lib/python3.9/site-packages/pandas/io/parsers.py in _open_handles(self, src, kwds)
   1360         Let the readers open IOHanldes after they are done with their potential raises.
   1361         """
-> 1362         self.handles = get_handle(
   1363             src,
   1364             "r",

~/anaconda3/envs/QML/lib/python3.9/site-packages/pandas/io/common.py in get_handle(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)
    640                 errors = "replace"
    641             # Encoding
--> 642             handle = open(
    643                 handle,
    644                 ioargs.mode,

FileNotFoundError: [Errno 2] No such file or directory: './output_parameters/summary_output.csv'

As previously describe I have the same errors:

Exception raised whilst saving results:
index 1 is out of bounds for axis 0 with size 1
Unable to save results

Could you reopen the issue, please?

Regards,

Christophe

Hi @Christophe-pere

That's very odd, because I can't seem to replicate the issue. Can you provide a copy of your input files? I'm wondering if that's the issue.

I will carry on having a look at this, but I'm working on a fairly major update which should fix any issues in the places you're seeing them. That version should be coming to pip soon, but in the meantime, if you want to try the version on the multiprocessing_dev branch (v2.3.0dev) then that might help

Josh

Hi @Christophe-pere

Version 2.3.0 is now on PyPi and should have fixed your issues. Can you try it and let me know please?

Josh

Hi @joshjchayes,

Sorry for the delay. Try the same with the 2.3 version and still got the error.

You can find the files and the notebook here: transitfit

Chris

Hi @Christophe-pere

Thanks for sharing the files, I've managed to replicate the issue and have spotted the cause now. I have released version 2.3.1 with fixes.

As an aside, you should remove the q0 values from your prior files. You're setting the prior for the same filter twice. Also, in general, you don't need to set the LDC priors in the priors file, as TransitFit will do that for you (using the Kipping parameterisation). I did think that setting them explicitly in the priors file would override that, but something is stopping that happening. I will investigate that but, for now, I would suggest removing all references to q0, q1 etc from your priors file and just let TransitFit do its thing with them.

Thanks for your time in helping fix this!

Josh

Hi Josh,

Thanks for your reply. Sorry for my mistakes.

I tried without q0 parameter inside the error disappeared but, I see what seems to be a little bug?

Exception raised whilst saving results:
local variable 'a_AU' referenced before assignment
Unable to save results
Initialising best fit model

I also have this warning at the end:

Plotting final curves
  File "/Users/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/retriever.py", line 360, in _run_full_retrieval
    output_handler.save_results([results], [priors], [lightcurves],
  File "/Users/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/output_handler.py", line 337, in save_results
    self._save_results_dict(combined_results, os.path.join(output_folder, full_output_file), True)
  File "/Users/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/output_handler.py", line 756, in _save_results_dict
    df = self._results_dict_to_dataframe(results_dict, batched)
  File "/Users/anaconda3/envs/QML/lib/python3.9/site-packages/transitfit/output_handler.py", line 954, in _results_dict_to_dataframe
    vals_arr = np.append(vals_arr, np.array([['a/AU', tidx, fidx, eidx, a_AU, a_AU_err]]), axis=0)

Thanks for your time,

Chris