kjunhwa
JUN-HWA KIM(김준화) Computer Vision, Deep Learning
Dongguk Unvi Digital Image ProcessingSeoul, Korea
kjunhwa's Stars
experiencor/keras-yolo2
Easy training on custom dataset. Various backends (MobileNet and SqueezeNet) supported. A YOLO demo to detect raccoon run entirely in brower is accessible at https://git.io/vF7vI (not on Windows).
kozistr/Awesome-GANs
Awesome Generative Adversarial Networks with tensorflow
kesamet/dcgan_tensorflow
First experiments with DCGAN
Overseer66/Tensorflow-GAN
GAN / DCGAN / InfoGAN / BEGAN ...
zzsza/Deep_Learning_starting_with_the_latest_papers
최신 논문으로 시작하는 딥러닝 강의 (개정된 강의 이름 : 논문으로 짚어보는 딥러닝의 맥) 기록
jfzhang95/pytorch-video-recognition
PyTorch implemented C3D, R3D, R2Plus1D models for video activity recognition.
hunkim/PyTorchZeroToAll
Simple PyTorch Tutorials Zero to ALL!
gilbutITbook/006975
케라스 창시자에게 배우는 딥러닝
Subhanandh/Visual_analysis
Visual analysis of DenseNet model using Keras
Oh-Yoojin/DenseNet-keras
RubensZimbres/Repo-2018
Deep Learning Summer School + Tensorflow + OpenCV cascade training + YOLO + COCO + CycleGAN + AWS EC2 Setup + AWS IoT Project + AWS SageMaker + AWS API Gateway + Raspberry Pi3 Ubuntu Core
mafda/generative_adversarial_networks_101
Keras implementations of Generative Adversarial Networks. GANs, DCGAN, CGAN, CCGAN, WGAN and LSGAN models with MNIST and CIFAR-10 datasets.