The Julia Language
Julia is a high-level, high-performance dynamic language for technical computing. The main homepage for Julia can be found at julialang.org. This is the GitHub repository of Julia source code, including instructions for compiling and installing Julia, below.
Resources
- Homepage: https://julialang.org
- Binaries: https://julialang.org/downloads/
- Source code: https://github.com/JuliaLang/julia
- Documentation: https://docs.julialang.org
- Packages: https://pkg.julialang.org/
- Discussion forum: https://discourse.julialang.org
- Slack: https://julialang.slack.com (get an invite from https://slackinvite.julialang.org)
- YouTube: https://www.youtube.com/user/JuliaLanguage
- Code coverage: https://coveralls.io/r/JuliaLang/julia
New developers may find the notes in CONTRIBUTING helpful to start contributing to the Julia codebase.
External Resources
Binary Installation
If you would rather not compile the latest Julia from source, platform-specific tarballs with pre-compiled binaries are also available for download. The downloads page also provides details on the different tiers of support for OS and platform combinations.
If everything works correctly, you will see a Julia banner and an interactive prompt into which you can enter expressions for evaluation. You can read about getting started in the manual.
Note: Although some system package managers provide Julia, such installations are neither maintained nor endorsed by the Julia project. They may be outdated, broken and/or unmaintained. We recommend you use the official Julia binaries instead.
Building Julia
First, make sure you have all the required dependencies installed. Then, acquire the source code by cloning the git repository:
git clone git://github.com/JuliaLang/julia.git
By default you will be building the latest unstable version of Julia. However, most users should use the most recent stable version of Julia. You can get this version by changing to the Julia directory and running:
git checkout v1.4.2
Now run make
to build the julia
executable.
Building Julia requires 2GiB of disk space and approximately 4GiB of virtual memory.
Note: The build process will fail badly if any of the build directory's parent directories have spaces or other shell meta-characters such as $
or :
in their names (this is due to a limitation in GNU make).
Once it is built, you can run the julia
executable after you enter your julia directory and run
./julia
Your first test of Julia determines whether your build is working
properly. From the UNIX/Windows command prompt inside the julia
source directory, type make testall
. You should see output that
lists a series of running tests; if they complete without error, you
should be in good shape to start using Julia.
You can read about getting started in the manual.
In case this default build path did not work, detailed build instructions are included in the build documentation.
Uninstalling Julia
Julia does not install anything outside the directory it was cloned
into. Julia can be completely uninstalled by deleting this
directory. Julia packages are installed in ~/.julia
by default, and
can be uninstalled by deleting ~/.julia
.
Source Code Organization
The Julia source code is organized as follows:
base/ source code for the Base module (part of Julia's standard library)
stdlib/ source code for other standard library packages
contrib/ editor support for Julia source, miscellaneous scripts
deps/ external dependencies
doc/src/manual source for the user manual
doc/build detailed notes for building Julia
src/ source for Julia language core
test/ test suites
ui/ source for various front ends
usr/ binaries and shared libraries loaded by Julia's standard libraries
Terminal, Editors and IDEs
The Julia REPL is quite powerful. See the section in the manual on the Julia REPL for more details.
On Windows we highly recommend running Julia using a modern terminal, such as installing the Windows Terminal from the Microsoft Store.
Support for editing Julia is available for many widely used editors: Emacs, Vim, Sublime Text, and many others.
Supported IDEs include: Juno (Atom plugin), julia-vscode (VS Code plugin), and julia-intellij (IntelliJ IDEA plugin). The popular Jupyter notebook interface is available through IJulia.