This is a repository for doing dictionary learning via sparse autoencoders on neural network activations. It was developed by Samuel Marks and Aaron Mueller.

For accessing, saving, and intervening on NN activations, we use the nnsight package; as of March 2024, nnsight is under active development and may undergo breaking changes. That said, nnsight is easy to use and quick to learn; if you plan to modify this repo, then we recommend going through the main nnsight demo here.

Some dictionaries trained using this repository (and asociated training checkpoints) can be accessed at https://baulab.us/u/smarks/autoencoders/. See below for more information about these dictionaries.

Set-up

Navigate to the to the location where you would like to clone this repo, clone and enter the repo, and install the requirements.

git clone https://github.com/saprmarks/dictionary_learning
cd dictionary_learning
pip install -r requirements.txt

To use dictionary_learning, include it as a subdirectory in some project's directory and import it; see the examples below.

Using trained dictionaries

You can load and used a pretrained dictionary as follows

from dictionary_learning import AutoEncoder

# load autoencoder
ae = AutoEncoder.from_pretrained("path/to/dictionary/weights")

# get NN activations using your preferred method: hooks, transformer_lens, nnsight, etc. ...
# for now we'll just use random activations
activations = torch.randn(64, activation_dim)
features = ae.encode(activations) # get features from activations
reconstructed_activations = ae.decode(features)

# you can also just get the reconstruction ...
reconstructed_activations = ae(activations)
# ... or get the features and reconstruction at the same time
reconstructed_activations, features = ae(activations, output_features=True)

Dictionaries have encode, decode, and forward methods -- see dictionary.py.

Training your own dictionaries

To train your own dictionaries, you'll need to understand a bit about our infrastructure. (See below for downloading our dictionaries.)

One key object is the ActivationBuffer, defined in buffer.py. Following Neel Nanda's appraoch, ActivationBuffers maintain a buffer of NN activations, which it outputs in batches.

An ActivationBuffer is initialized from an nnsight LanguageModel object, a submodule (e.g. an MLP), and a generator which yields strings (the text data). It processes a large number of strings, up to some capacity, and saves the submodule's activations. You sample batches from it, and when it is half-depleted, it refreshes itself with new text data.

Here's an example for training a dictionary; in it we load a language model as an nnsight LanguageModel (this will work for any Huggingface model), specify a submodule, create an ActivationBuffer, and then train an autoencoder with trainSAE.

from nnsight import LanguageModel
from dictionary_learning import ActivationBuffer
from dictionary_learning.training import trainSAE

model = LanguageModel(
    'EleutherAI/pythia-70m-deduped', # this can be any Huggingface model
    device_map = 'cuda:0'
)
submodule = model.gpt_neox.layers[1].mlp # layer 1 MLP
activation_dim = 512 # output dimension of the MLP
dictionary_size = 16 * activation_dim

# data much be an iterator that outputs strings
data = iter([
    'This is some example data',
    'In real life, for training a dictionary',
    'you would need much more data than this'
])
buffer = ActivationBuffer(
    data,
    model,
    submodule,
    d_submodule=activation_dim, # output dimension of the model component
    n_ctxs=3e4, # you can set this higher or lower dependong on your available memory
    device='cuda:0' # doesn't have to be the same device that you train your autoencoder on
) # buffer will return batches of tensors of dimension = submodule's output dimension

# train the sparse autoencoder (SAE)
ae = trainSAE(
    buffer,
    activation_dim,
    dictionary_size,
    lr=3e-4,
    sparsity_penalty=1e-3,
    device='cuda:0'
)

Some technical notes our training infrastructure and supported features:

  • Training uses the ConstrainedAdam optimizer defined in training.py. This is a variant of Adam which supports constraining the AutoEncoder's decoder weights to be norm 1.
  • Neuron resampling: if a resample_steps argument is passed to trainSAE, then dead neurons will periodically be resampled according to the procedure specified here.
  • Learning rate warmup: if a warmup_steps argument is passed to trainSAE, then a linear LR warmup is used at the start of training and, if doing neuron resampling, also after every time neurons are resampled.

If submodule is a model component where the activations are tuples (e.g. this is common when working with residual stream activations), then the buffer yields the first coordinate of the tuple.

Downloading our open-source dictionaries

To download our pretrained dictionaries automatically, run:

./pretrained_dictionary_downloader.sh

Per default, this will download dictionaries of all submodules (~2.5 GB). The --layers "embed,0,1,2,3,4,5" flag allows you to select specific layers, e.g append --layers "embed,2" to download dictionaries for the outputs of embedding, as well as attention, MLP, and residual stream submodules in layer 2. Optionally, you can download checkpoints for the selected layers with --checkpoints (note that checkpoints take up ~10 GB per layer).

Currently, the main thing to look for is the dictionaries in our 10_32768 set; this set has dictionaries for MLP outputs, attention outputs, and residual streams (including embeddings) in all layers of EleutherAI's Pythia-70m-deduped model. These dictionaries were trained on 2B tokens from The Pile.

Let's explain the directory structure by example. After using the script above, you'll have a dictionaries/pythia-70m-deduped/mlp_out_layer1/10_32768 directory corresponding to the layer 1 MLP dictionary from the 10_32768 set. This directory contains:

  • ae.pt: the state_dict of the fully trained dictionary
  • config.json: a json file which specifies the hyperparameters used to train the dictionary
  • checkpoints/: a directory containing training checkpoints of the form ae_step.pt (only if you used the --checkpoints flag)

We've also previously released other dictionaries which can be found and downloaded here.

Statistics for our dictionaries

We'll report the following statistics for our 10_32768 dictionaries. These were measured using the code in evaluation.py.

  • MSE loss: average squared L2 distance between an activation and the autoencoder's reconstruction of it
  • L1 loss: a measure of the autoencoder's sparsity
  • L0: average number of features active above a random token
  • Percentage of neurons alive: fraction of the dictionary features which are active on at least one token out of 8192 random tokens
  • CE diff: difference between the usual cross-entropy loss of the model for next token prediction and the cross entropy when replacing activations with our dictionary's reconstruction
  • Percentage of CE loss recovered: when replacing the activation with the dictionary's reconstruction, the percentage of the model's cross-entropy loss on next token prediction that is recovered (relative to the baseline of zero ablating the activation)

Attention output dictionaries

Layer Variance Explained (%) L1 L0 % Alive CE Diff % CE Recovered
0 92 8 128 17 0.02 99
1 87 9 127 17 0.03 94
2 90 19 215 12 0.05 93
3 89 12 169 13 0.03 93
4 83 8 132 14 0.01 95
5 89 11 144 20 0.02 93

MLP output dictionaries

Layer Variance Explained (%) L1 L0 % Alive CE Diff % CE Recovered
0 97 5 5 40 0.10 99
1 85 8 69 44 0.06 95
2 99 12 88 31 0.11 88
3 88 20 160 25 0.12 94
4 92 20 100 29 0.14 90
5 96 31 102 35 0.15 97

Residual stream dictionaries

NOTE: these are indexed so that the resid_i dictionary is the output of the ith layer. Thus embeddings go first, then layer 0, etc.

Layer Variance Explained (%) L1 L0 % Alive CE Diff % CE Recovered
embed 96 1 3 36 0.17 98
0 92 11 59 41 0.24 97
1 85 13 54 38 0.45 95
2 96 24 108 27 0.55 94
3 96 23 68 22 0.58 95
4 88 23 61 27 0.48 95
5 90 35 72 45 0.55 92

Extra functionality supported by this repo

Note: these features are likely to be depricated in future releases.

We've included support for some experimental features. We briefly investigated them as an alternative approaches to training dictionaries.

  • MLP stretchers. Based on the perspective that one may be able to identify features with "neurons in a sufficiently large model," we experimented with training "autoencoders" to, given as input an MLP input activation $x$, output not $x$ but $MLP(x)$ (the same output as the MLP). For instance, given an MLP which maps a 512-dimensional input $x$ to a 1024-dimensional hidden state $h$ and then a 512-dimensional output $y$, we train a dictionary $A$ with hidden dimension 16384 = 16 x 1024 so that $A(x)$ is close to $y$ (and, as usual, so that the hidden state of the dictionary is sparse).
    • The resulting dictionaries seemed decent, but we decided not to pursue the idea further.
    • To use this functionality, set the io parameter of an activaiton buffer to 'in_to_out' (default is 'out').
    • h/t to Max Li for this suggestion.
  • Replacing L1 loss with entropy. Based on the ideas in this post, we experimented with using entropy to regularize a dictionary's hidden state instead of L1 loss. This seemed to cause the features to split into dead features (which never fired) and very high-frequency features which fired on nearly every input, which was not the desired behavior. But plausibly there is a way to make this work better.
  • Ghost grads, as described here.