The structure of the model trained is problematic.
Opened this issue · 2 comments
The dictionary structure of the model trained with the source code you provided looks like this:
odict_keys([
'conv_first.weight', 'conv_first.bias',
'RRDB_trunk.0.RDB1.conv1.weight', 'RRDB_trunk.0.RDB1.conv1.bias',
'RRDB_trunk.0.RDB1.conv2.weight', 'RRDB_trunk.0.RDB1.conv2.bias',
'RRDB_trunk.0.RDB1.conv3.weight', 'RRDB_trunk.0.RDB1.conv3.bias',
'RRDB_trunk.0.RDB1.conv4.weight', 'RRDB_trunk.0.RDB1.conv4.bias',
'RRDB_trunk.0.RDB1.conv5.weight', 'RRDB_trunk.0.RDB1.conv5.bias',
'RRDB_trunk.0.RDB2.conv1.weight', 'RRDB_trunk.0.RDB2.conv1.bias',
'RRDB_trunk.0.RDB2.conv2.weight', 'RRDB_trunk.0.RDB2.conv2.bias',
'RRDB_trunk.0.RDB2.conv3.weight', 'RRDB_trunk.0.RDB2.conv3.bias',
'RRDB_trunk.0.RDB2.conv4.weight', 'RRDB_trunk.0.RDB2.conv4.bias',
'RRDB_trunk.0.RDB2.conv5.weight', 'RRDB_trunk.0.RDB2.conv5.bias',
'RRDB_trunk.0.RDB3.conv1.weight', 'RRDB_trunk.0.RDB3.conv1.bias',
'RRDB_trunk.0.RDB3.conv2.weight', 'RRDB_trunk.0.RDB3.conv2.bias',
'RRDB_trunk.0.RDB3.conv3.weight', 'RRDB_trunk.0.RDB3.conv3.bias',
'RRDB_trunk.0.RDB3.conv4.weight', 'RRDB_trunk.0.RDB3.conv4.bias',
'RRDB_trunk.0.RDB3.conv5.weight', 'RRDB_trunk.0.RDB3.conv5.bias',
'RRDB_trunk.1.RDB1.conv1.weight', 'RRDB_trunk.1.RDB1.conv1.bias',
'RRDB_trunk.1.RDB1.conv2.weight', 'RRDB_trunk.1.RDB1.conv2.bias',
'RRDB_trunk.1.RDB1.conv3.weight', 'RRDB_trunk.1.RDB1.conv3.bias',
'RRDB_trunk.1.RDB1.conv4.weight', 'RRDB_trunk.1.RDB1.conv4.bias',
'RRDB_trunk.1.RDB1.conv5.weight', 'RRDB_trunk.1.RDB1.conv5.bias',
'RRDB_trunk.1.RDB2.conv1.weight', 'RRDB_trunk.1.RDB2.conv1.bias',
'RRDB_trunk.1.RDB2.conv2.weight', 'RRDB_trunk.1.RDB2.conv2.bias',
'RRDB_trunk.1.RDB2.conv3.weight', 'RRDB_trunk.1.RDB2.conv3.bias',
'RRDB_trunk.1.RDB2.conv4.weight', 'RRDB_trunk.1.RDB2.conv4.bias',
'RRDB_trunk.1.RDB2.conv5.weight', 'RRDB_trunk.1.RDB2.conv5.bias',
The test conducted shows the following error:
weight = weight['model']
KeyError: 'model'
But the structure of the model you provided is like this:
dict_keys(['model', 'discriminator'])
Where is the problem?
Hi, sorry for this problem, as for storage space saving purpose, we do not save the weight of discriminator in our final implementation code. Therefore, you can test with your trained model after commenting line 35 in the test.py. We will fix this bug in the future updates.
Thank you very much for resolving the issue.