执行这个命令 make GGML_CUDA=1 -j 报下面得错误 我安装cuda版本是cu121
anstonjie opened this issue · 0 comments
(voicechat2) root@admin9:/home/voicechat2/llama.cpp# make GGML_CUDA=1 -j
I ccache not found. Consider installing it for faster compilation.
expr: 语法错误:未预期的参数 "070100"
expr: 语法错误:未预期的参数 "080100"
I llama.cpp build info:
I UNAME_S: Linux
I UNAME_P: x86_64
I UNAME_M: x86_64
I CFLAGS: -Iggml/include -Iggml/src -Iinclude -Isrc -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_OPENMP -DGGML_USE_LLAMAFILE -DGGML_USE_CUDA -I/usr/local/cuda/include -I/usr/local/cuda/targets/x86_64-linux/include -DGGML_CUDA_USE_GRAPHS -std=c11 -fPIC -O3 -g -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration -pthread -march=native -mtune=native -fopenmp -Wdouble-promotion
I CXXFLAGS: -std=c++11 -fPIC -O3 -g -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread -fopenmp -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi -Iggml/include -Iggml/src -Iinclude -Isrc -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_OPENMP -DGGML_USE_LLAMAFILE -DGGML_USE_CUDA -I/usr/local/cuda/include -I/usr/local/cuda/targets/x86_64-linux/include -DGGML_CUDA_USE_GRAPHS
I NVCCFLAGS: -std=c++11 -O3 -g -use_fast_math --forward-unknown-to-host-compiler -arch=native -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_MMV_Y=1 -DK_QUANTS_PER_ITERATION=2 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128
I LDFLAGS: -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/usr/lib64 -L/usr/local/cuda/targets/x86_64-linux/lib -L/usr/local/cuda/lib64/stubs -L/usr/lib/wsl/lib
I CC: cc (Ubuntu 11.4.0-1ubuntu122.04) 11.4.022.04) 11.4.0
I CXX: c++ (Ubuntu 11.4.0-1ubuntu1
I NVCC: Build cuda_11.5.r11.5/compiler.30672275_0
Makefile:993: *** I ERROR: For CUDA versions < 11.7 a target CUDA architecture must be explicitly provided via environment variable CUDA_DOCKER_ARCH, e.g. by running "export CUDA_DOCKER_ARCH=compute_XX" on Unix-like systems, where XX is the minimum compute capability that the code needs to run on. A list with compute capabilities can be found here: https://developer.nvidia.com/cuda-gpus 。 停止。