Reverse engineering framework in Python
Table of Contents
- What is Miasm?
- Basic examples
- How does it work?
- Documentation
- Obtaining Miasm
- Testing
- They already use Miasm
- Misc
What is Miasm?
Miasm is a free and open source (GPLv2) reverse engineering framework. Miasm aims to analyze / modify / generate binary programs. Here is a non exhaustive list of features:
- Opening / modifying / generating PE / ELF 32 / 64 LE / BE using Elfesteem
- Assembling / Disassembling X86 / ARM / MIPS / SH4 / MSP430
- Representing assembly semantic using intermediate language
- Emulating using JIT (dynamic code analysis, unpacking, ...)
- Expression simplification for automatic de-obfuscation
- ...
See the official blog for more examples and demos.
Basic examples
Assembling / Disassembling
Import Miasm x86 architecture:
>>> from miasm2.arch.x86.arch import mn_x86
Assemble a line:
>>> l = mn_x86.fromstring('XOR ECX, ECX', 32)
>>> print l
XOR ECX, ECX
>>> mn_x86.asm(l)
['1\xc9', '3\xc9', 'g1\xc9', 'g3\xc9']
Modify an operand:
>>> l.args[0] = mn_x86.regs.EAX
>>> print l
XOR EAX, ECX
>>> a = mn_x86.asm(l)
>>> print a
['1\xc8', '3\xc1', 'g1\xc8', 'g3\xc1']
Disassemble the result:
>>> print mn_x86.dis(a[0], 32)
XOR EAX, ECX
Using Machine
abstraction:
>>> from miasm2.analysis.machine import Machine
>>> mn = Machine('x86_32').mn
>>> print mn.dis('\x33\x30', 32)
XOR ESI, DWORD PTR [EAX]
For Mips:
>>> mn = Machine('mips32b').mn
>>> print mn.dis('97A30020'.decode('hex'), "b")
LHU V1, 0x20(SP)
Intermediate representation
Create an instruction:
>>> machine = Machine('arml')
>>> l = machine.mn.dis('002088e0'.decode('hex'), 'l')
>>> print l
ADD R2, R8, R0
Create an intermediate representation (IR) object:
>>> ira = machine.ira()
Add instruction to the pool:
>>> ira.add_instr(l)
Print current pool:
>>> for lbl, irblock in ira.blocks.items():
... print irblock
...
loc_0000000000000000:0x00000000
R2 = (R8+R0)
IRDst = loc_0000000000000004:0x00000004
Working with IR, for instance by getting side effects:
>>> for lbl, irblock in ira.blocks.iteritems():
... for assignblk in irblock:
... rw = assignblk.get_rw()
... for dst, reads in rw.iteritems():
... print 'read: ', [str(x) for x in reads]
... print 'written:', dst
... print
...
read: ['R8', 'R0']
written: R2
read: ['loc_0000000000000004:0x00000004']
written: IRDst
Emulation
Giving a shellcode:
00000000 8d4904 lea ecx, [ecx+0x4]
00000003 8d5b01 lea ebx, [ebx+0x1]
00000006 80f901 cmp cl, 0x1
00000009 7405 jz 0x10
0000000b 8d5bff lea ebx, [ebx-1]
0000000e eb03 jmp 0x13
00000010 8d5b01 lea ebx, [ebx+0x1]
00000013 89d8 mov eax, ebx
00000015 c3 ret
>>> s = '\x8dI\x04\x8d[\x01\x80\xf9\x01t\x05\x8d[\xff\xeb\x03\x8d[\x01\x89\xd8\xc3'
Import the shellcode thanks to the Container
abstraction:
>>> from miasm2.analysis.binary import Container
>>> c = Container.from_string(s)
>>> c
<miasm2.analysis.binary.ContainerUnknown object at 0x7f34cefe6090>
Disassembling the shellcode at address 0
:
>>> from miasm2.analysis.machine import Machine
>>> machine = Machine('x86_32')
>>> mdis = machine.dis_engine(c.bin_stream)
>>> blocks = mdis.dis_multiblock(0)
>>> for block in blocks:
... print block
...
loc_0000000000000000:0x00000000
LEA ECX, DWORD PTR [ECX+0x4]
LEA EBX, DWORD PTR [EBX+0x1]
CMP CL, 0x1
JZ loc_0000000000000010:0x00000010
-> c_next:loc_000000000000000B:0x0000000b c_to:loc_0000000000000010:0x00000010
loc_0000000000000010:0x00000010
LEA EBX, DWORD PTR [EBX+0x1]
-> c_next:loc_0000000000000013:0x00000013
loc_000000000000000B:0x0000000b
LEA EBX, DWORD PTR [EBX+0xFFFFFFFF]
JMP loc_0000000000000013:0x00000013
-> c_to:loc_0000000000000013:0x00000013
loc_0000000000000013:0x00000013
MOV EAX, EBX
RET
>>>
Initializing the Jit engine with a stack:
>>> jitter = machine.jitter(jit_type='python')
>>> jitter.init_stack()
Add the shellcode in an arbitrary memory location:
>>> run_addr = 0x40000000
>>> from miasm2.jitter.csts import PAGE_READ, PAGE_WRITE
>>> jitter.vm.add_memory_page(run_addr, PAGE_READ | PAGE_WRITE, s)
Create a sentinelle to catch the return of the shellcode:
def code_sentinelle(jitter):
jitter.run = False
jitter.pc = 0
return True
>>> jitter.add_breakpoint(0x1337beef, code_sentinelle)
>>> jitter.push_uint32_t(0x1337beef)
Active logs:
>>> jitter.jit.log_regs = True
>>> jitter.jit.log_mn = True
Run at arbitrary address:
>>> jitter.init_run(run_addr)
>>> jitter.continue_run()
RAX 0000000000000000 RBX 0000000000000000 RCX 0000000000000000 RDX 0000000000000000
RSI 0000000000000000 RDI 0000000000000000 RSP 000000000123FFF8 RBP 0000000000000000
zf 0000000000000000 nf 0000000000000000 of 0000000000000000 cf 0000000000000000
RIP 0000000040000000
40000000 LEA ECX, DWORD PTR [ECX+0x4]
RAX 0000000000000000 RBX 0000000000000000 RCX 0000000000000004 RDX 0000000000000000
RSI 0000000000000000 RDI 0000000000000000 RSP 000000000123FFF8 RBP 0000000000000000
zf 0000000000000000 nf 0000000000000000 of 0000000000000000 cf 0000000000000000
....
4000000e JMP loc_0000000040000013:0x40000013
RAX 0000000000000000 RBX 0000000000000000 RCX 0000000000000004 RDX 0000000000000000
RSI 0000000000000000 RDI 0000000000000000 RSP 000000000123FFF8 RBP 0000000000000000
zf 0000000000000000 nf 0000000000000000 of 0000000000000000 cf 0000000000000000
RIP 0000000040000013
40000013 MOV EAX, EBX
RAX 0000000000000000 RBX 0000000000000000 RCX 0000000000000004 RDX 0000000000000000
RSI 0000000000000000 RDI 0000000000000000 RSP 000000000123FFF8 RBP 0000000000000000
zf 0000000000000000 nf 0000000000000000 of 0000000000000000 cf 0000000000000000
RIP 0000000040000013
40000015 RET
>>>
Interacting with the jitter:
>>> jitter.vm
ad 1230000 size 10000 RW_ hpad 0x2854b40
ad 40000000 size 16 RW_ hpad 0x25e0ed0
>>> hex(jitter.cpu.EAX)
'0x0L'
>>> jitter.cpu.ESI = 12
Symbolic execution
Initializing the IR pool:
>>> ira = machine.ira()
>>> for block in blocks:
... ira.add_block(block)
...
Initializing the engine with default symbolic values:
>>> from miasm2.ir.symbexec import SymbolicExecutionEngine
>>> sb = SymbolicExecutionEngine(ira, machine.mn.regs.regs_init)
Launching the execution:
>>> symbolic_pc = sb.run_at(0)
>>> print symbolic_pc
((ECX_init+0x4)[0:8]+0xFF)?(0xB,0x10)
Same, with step logs (only changes are displayed):
>>> sb = SymbolicExecutionEngine(ira, machine.mn.regs.regs_init)
>>> symbolic_pc = sb.run_at(0, step=True)
________________________________________________________________________________
ECX (ECX_init+0x4)
________________________________________________________________________________
ECX (ECX_init+0x4)
EBX (EBX_init+0x1)
________________________________________________________________________________
zf ((ECX_init+0x4)[0:8]+0xFF)?(0x0,0x1)
nf ((ECX_init+0x4)[0:8]+0xFF)[7:8]
pf (parity ((ECX_init+0x4)[0:8]+0xFF))
of ((((ECX_init+0x4)[0:8]+0xFF)^(ECX_init+0x4)[0:8])&((ECX_init+0x4)[0:8]^0x1))[7:8]
cf (((((ECX_init+0x4)[0:8]+0xFF)^(ECX_init+0x4)[0:8])&((ECX_init+0x4)[0:8]^0x1))^((ECX_init+0x4)[0:8]+0xFF)^(ECX_init+0x4)[0:8]^0x1)[7:8]
af (((ECX_init+0x4)[0:8]+0xFF)&0x10)?(0x1,0x0)
ECX (ECX_init+0x4)
EBX (EBX_init+0x1)
________________________________________________________________________________
IRDst ((ECX_init+0x4)[0:8]+0xFF)?(0xB,0x10)
zf ((ECX_init+0x4)[0:8]+0xFF)?(0x0,0x1)
nf ((ECX_init+0x4)[0:8]+0xFF)[7:8]
pf (parity ((ECX_init+0x4)[0:8]+0xFF))
of ((((ECX_init+0x4)[0:8]+0xFF)^(ECX_init+0x4)[0:8])&((ECX_init+0x4)[0:8]^0x1))[7:8]
cf (((((ECX_init+0x4)[0:8]+0xFF)^(ECX_init+0x4)[0:8])&((ECX_init+0x4)[0:8]^0x1))^((ECX_init+0x4)[0:8]+0xFF)^(ECX_init+0x4)[0:8]^0x1)[7:8]
af (((ECX_init+0x4)[0:8]+0xFF)&0x10)?(0x1,0x0)
EIP ((ECX_init+0x4)[0:8]+0xFF)?(0xB,0x10)
ECX (ECX_init+0x4)
EBX (EBX_init+0x1)
Retry execution with a concrete ECX. Here, the symbolic / concolic execution reach the shellcode's end:
>>> from miasm2.expression.expression import ExprInt32
>>> sb.symbols[machine.mn.regs.ECX] = ExprInt32(-3)
>>> symbolic_pc = sb.run_at(0, step=True)
________________________________________________________________________________
ECX 0x1
________________________________________________________________________________
ECX 0x1
EBX (EBX_init+0x1)
________________________________________________________________________________
zf 0x1
nf 0x0
pf 0x1
of 0x0
cf 0x0
af 0x0
ECX 0x1
EBX (EBX_init+0x1)
________________________________________________________________________________
IRDst 0x10
zf 0x1
nf 0x0
pf 0x1
of 0x0
cf 0x0
af 0x0
EIP 0x10
ECX 0x1
EBX (EBX_init+0x1)
________________________________________________________________________________
IRDst 0x10
zf 0x1
nf 0x0
pf 0x1
of 0x0
cf 0x0
af 0x0
EIP 0x10
ECX 0x1
EBX (EBX_init+0x2)
________________________________________________________________________________
IRDst 0x13
zf 0x1
nf 0x0
pf 0x1
of 0x0
cf 0x0
af 0x0
EIP 0x10
ECX 0x1
EBX (EBX_init+0x2)
________________________________________________________________________________
IRDst 0x13
zf 0x1
nf 0x0
pf 0x1
of 0x0
cf 0x0
af 0x0
EIP 0x10
EAX (EBX_init+0x2)
ECX 0x1
EBX (EBX_init+0x2)
________________________________________________________________________________
IRDst @32[ESP_init]
zf 0x1
nf 0x0
pf 0x1
of 0x0
cf 0x0
af 0x0
EIP @32[ESP_init]
EAX (EBX_init+0x2)
ECX 0x1
EBX (EBX_init+0x2)
ESP (ESP_init+0x4)
>>> print symbolic_pc
@32[ESP_init]
>>> sb.dump_id()
IRDst @32[ESP_init]
zf 0x1
nf 0x0
pf 0x1
of 0x0
cf 0x0
af 0x0
EIP @32[ESP_init]
EAX (EBX_init+0x2)
ECX 0x1
EBX (EBX_init+0x2)
ESP (ESP_init+0x4)
How does it work?
Miasm embeds its own disassembler, intermediate language and instruction semantic. It is written in Python.
To emulate code, it uses LLVM, GCC, Clang or Python to JIT the intermediate representation. It can emulate shellcodes and all or parts of binaries. Python callbacks can be executed to interact with the execution, for instance to emulate library functions effects.
Documentation
TODO
An auto-generated documentation is available here.
Obtaining Miasm
- Clone the repository: Miasm on GitHub
- Get one of the Docker images at Docker Hub
Software requirements
Miasm uses:
- python-pyparsing
- python-dev
- elfesteem from Elfesteem
- optionally python-pycparser (version >= 2.17)
To enable code JIT, one of the following module is mandatory:
- GCC
- Clang
- LLVM with Numba llvmlite, see below
'optional' Miasm can also use:
- Z3, the Theorem Prover
Configuration
- Install elfesteem
git clone https://github.com/serpilliere/elfesteem.git elfesteem
cd elfesteem
python setup.py build
sudo python setup.py install
To use the jitter, GCC or LLVM is recommended
- GCC (any version)
- Clang (any version)
- LLVM
- Debian (testing/unstable): Not tested
- Debian stable/Ubuntu/Kali/whatever:
pip install llvmlite
or install from llvmlite - Windows: Not tested
- Build and install Miasm:
$ cd miasm_directory
$ python setup.py build
$ sudo python setup.py install
If something goes wrong during one of the jitter modules compilation, Miasm will skip the error and disable the corresponding module (see the compilation output).
Windows & IDA
Most of Miasm's IDA plugins use a subset of Miasm functionnality. A quick way to have them working is to add:
elfesteem
directory andpyparsing.py
toC:\...\IDA\python\
orpip install pyparsing elfesteem
miasm2/miasm2
directory toC:\...\IDA\python\
All features excepting JITter related ones will be available. For a more complete installation, please refer to above paragraphs.
Testing
Miasm comes with a set of regression tests. To run all of them:
cd miasm_directory/test
python test_all.py
Some options can be specified:
- Mono threading:
-m
- Code coverage instrumentation:
-c
- Only fast tests:
-t long
(excludes the long tests)
They already use Miasm
Tools
- Sibyl: A function divination too
- R2M2: Use miasm2 as a radare2 plugin
- CGrex : Targeted patcher for CGC binaries
- ethRE Reversing tool for Ethereum EVM (with corresponding Miasm2 architecture)
Blog posts / papers / conferences
- Deobfuscation: recovering an OLLVM-protected program
- Taming a Wild Nanomite-protected MIPS Binary With Symbolic Execution: No Such Crackme
- Génération rapide de DGA avec Miasm: Quick computation of DGA (French article)
- Enabling Client-Side Crash-Resistance to Overcome Diversification and Information Hiding: Detect undirected call potential arguments
- Miasm: Framework de reverse engineering (French)
- Tutorial miasm (French video)
- Graphes de dépendances : Petit Poucet style: DepGraph (French)
Books
- Practical Reverse Engineering: X86, X64, Arm, Windows Kernel, Reversing Tools, and Obfuscation: Introduction to Miasm (Chapter 5 "Obfuscation")
- BlackHat Python - Appendix: Japan security book's samples
Misc
- Man, does miasm has a link with rr0d?
- Yes! crappy code and uggly documentation.