/REGroup

Official implementation of the paper: "REGroup: Rank-aggregating Ensemble of Generative Classifiers for Robust Predictions", IEEE WACV, 2022

Primary LanguageJupyter NotebookMIT LicenseMIT

alt text

This repository contains the demo code of the method called REGroup proposed in the paper: REGroup: Rank-aggregating Ensemble of Generative Classifiers for Robust Predictions, IEEE/CVF WACV, 2022.

Requirements

  • Pytorch
  • numpy, scipy
  • matplotlib
  • Jupyter notebook
  • foolbox (version 2.3.0)

Steps to run the demo

  • Clone the repository.
  • Download CIFAR10 PGD L-infinity adversarial examples
  • Open jupyter notebook REGroup_demo_cifar10_vgg19.ipynb
$ git clone https://github.com/lokender/REGroup.git
$ cd REGroup
$ wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1ylJctBJzh4ih-0zzD4ZLO2umh--QpX7u' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1ylJctBJzh4ih-0zzD4ZLO2umh--QpX7u" -O cifar10_vgg19_pgd_examples.mat && rm -rf /tmp/cookies.txt

To-dos?

  • [Done] Classifier: VGG19, Dataset: CIFAR10 ( Released )
  • [To-do] Classifier: VGG19, Dataset: ImageNet ( Will be released soon )
  • [To-do] Classifier: ResNet, Dataset: CIFAR10 ( Will be released soon )
  • [To-do] Classifier: ResNet, Dataset: ImageNet ( Will be released soon )
  • [To-do] Classifier: Inception, Dataset: ImageNet ( Will be released soon )
  • [To-do] Code for building generative classifiers. ( Will be released soon )

Report any bug or suggestion to tiwarilokender@gmail.com.

Press STAR on the top right of this page for continuous updates.