index -1 is out of bounds for dimension 1 with size 17
hengzhe-zhang opened this issue · 2 comments
hengzhe-zhang commented
I encountered this problem during the training process. What is the possible reason for this problem, and how can I solve this problem? Thanks!
File "/home/zhanghz/miniforge3/lib/python3.8/site-packages/pytorch_tabnet/tab_network.py", line 583, in forward
return self.tabnet(x)
File "/home/zhanghz/miniforge3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/home/zhanghz/miniforge3/lib/python3.8/site-packages/pytorch_tabnet/tab_network.py", line 468, in forward
steps_output, M_loss = self.encoder(x)
File "/home/zhanghz/miniforge3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/home/zhanghz/miniforge3/lib/python3.8/site-packages/pytorch_tabnet/tab_network.py", line 160, in forward
M = self.att_transformers[step](prior, att)
File "/home/zhanghz/miniforge3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/home/zhanghz/miniforge3/lib/python3.8/site-packages/pytorch_tabnet/tab_network.py", line 637, in forward
x = self.selector(x)
File "/home/zhanghz/miniforge3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/home/zhanghz/miniforge3/lib/python3.8/site-packages/pytorch_tabnet/sparsemax.py", line 109, in forward
return sparsemax(input, self.dim)
File "/home/zhanghz/miniforge3/lib/python3.8/site-packages/pytorch_tabnet/sparsemax.py", line 52, in forward
tau, supp_size = SparsemaxFunction._threshold_and_support(input, dim=dim)
File "/home/zhanghz/miniforge3/lib/python3.8/site-packages/pytorch_tabnet/sparsemax.py", line 94, in _threshold_and_support
tau = input_cumsum.gather(dim, support_size - 1)
RuntimeError: index -1 is out of bounds for dimension 1 with size 17
Experiment has terminated.
lotfyhussein commented
Hi,
May I ask how you train it?
harveenchadha commented
While training use drop_last = True