/binomial_moments

Handy formulas for high-order moments of binomial distribution.

Primary LanguageJupyter Notebook

made-with-python Open In Collab

Binomial Moments

This repo implements formulas for high-order moments of binomial distribution, discussed in the paper "Handy formulas for Binomial Moments".

Here is how the sixth moment looks like, as a function of the probability parameter and the number of trials.

image

And here are some first central moments, with $q=1-p,\sigma^2=pq$:

$d$ $\mathbb{E}[(S-\mathbb{E}[S])^d],\quad S\sim\mathrm{Binom}(n,p)$
2 $n \sigma^{2}$
3 $n \sigma^{2} \left(- 2 p + 1\right)$
4 $3 n^{2} \sigma^{4} + n \left(- 6 \sigma^{4} + \sigma^{2}\right)$
5 $\left(- 2 p + 1\right) \left(10 n^{2} \sigma^{4} + n \left(- 12 \sigma^{4} + \sigma^{2}\right)\right)$
6 $15 n^{3} \sigma^{6} + n^{2} \left(- 130 \sigma^{6} + 25 \sigma^{4}\right) + n \left(120 \sigma^{6} - 30 \sigma^{4} + \sigma^{2}\right)$
7 $\left(- 2 p + 1\right) \left(105 n^{3} \sigma^{6} + n^{2} \left(- 462 \sigma^{6} + 56 \sigma^{4}\right) + n \left(360 \sigma^{6} - 60 \sigma^{4} + \sigma^{2}\right)\right)$
8 $105 n^{4} \sigma^{8} + n^{3} \left(- 2380 \sigma^{8} + 490 \sigma^{6}\right) + n^{2} \left(7308 \sigma^{8} - 2156 \sigma^{6} + 119 \sigma^{4}\right) + n \left(- 5040 \sigma^{8} + 1680 \sigma^{6} - 126 \sigma^{4} + \sigma^{2}\right)$
9 $\left(- 2 p + 1\right) \left(1260 n^{4} \sigma^{8} + n^{3} \left(- 13216 \sigma^{8} + 1918 \sigma^{6}\right) + n^{2} \left(32112 \sigma^{8} - 6948 \sigma^{6} + 246 \sigma^{4}\right) + n \left(- 20160 \sigma^{8} + 5040 \sigma^{6} - 252 \sigma^{4} + \sigma^{2}\right)\right)$
10 $945 n^{5} \sigma^{10} + n^{4} \left(- 44100 \sigma^{10} + 9450 \sigma^{8}\right) + n^{3} \left(303660 \sigma^{10} - 99120 \sigma^{8} + 6825 \sigma^{6}\right) + n^{2} \left(- 623376 \sigma^{10} + 240840 \sigma^{8} - 24438 \sigma^{6} + 501 \sigma^{4}\right) + n \left(362880 \sigma^{10} - 151200 \sigma^{8} + 17640 \sigma^{6} - 510 \sigma^{4} + \sigma^{2}\right)$

These formulas can be used to obtain skewness and kurtosis:

skewness $\frac{1-2p}{\sqrt{npq}}$
excess kurtosis $\frac{1-6pq}{npq}$