marian-nmt/marian

How to develop a C++ tokenizer for MarianMT in C++

Zapotecatl opened this issue · 0 comments

Hi,

My intention is to develop a C++ project in Visual Studio (Windows) that runs the MarianMT model (exported to onnx) to translate from Spanish to English: https://huggingface.co/Helsinki-NLP/opus-mt-es-en. For this reason, I want to develop a C++ tokenizer based on sentepiece (https://github.com/google/sentencepiece).

I used the sentencepiece library (I built the static library and configured it in my visual studio). I used the source.spm file as the model. My program and output is this:

#include <iostream>
#include <sentencepiece_processor.h>
int main()
{
    sentencepiece::SentencePieceProcessor processor;
    const auto status = processor.Load("D:\\SentencePiece\\source.spm");

    if (!status.ok()) {
        std::cerr << status.ToString() << std::endl;
        // error
    }
   
    std::vector<std::string> pieces;
    processor.Encode("Hola mi amor", &pieces);
    for (const std::string& token : pieces) {
        std::cout << token << std::endl;
    }

    std::vector<int> ids;
    processor.Encode("Hola mi amor", &ids);
    for (const int id : ids) {
        std::cout << id << std::endl;
    }
}

Output

ÔûüHola
Ôûümi
Ôûüamor
868
64
866

Which apparently tokenizes correctly. However, my problem is with the ids. My python program delivers the correct ids.

from transformers import AutoTokenizer, MarianMTModel

src = "es"  # source language
trg = "en"  # target language
model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}"
model = MarianMTModel.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

sample_text = "Hola mi amor"
batch = tokenizer([sample_text], return_tensors="pt")
print(batch)

Output

{'input_ids': tensor([[2119, 155, 1821, 0]]), 'attention_mask': tensor([[1, 1, 1, 1]])}

I'm probably interpreting something wrong? Could you please give me a suggestion on how to proceed?