markjay4k/YOLO-series

New Dataset Training Error - "AttributeError: 'NoneType' object has no attribute 'shape'"

karan6100 opened this issue · 0 comments

Hi, I am trying to train custom object detection to detect my company-logo, everything went well until this error, I also deleted and annotated images again but it no change in the outcome. Can someone please help me with this
Thank You

cfg/tiny-yolo-voc-1c.cfg parsing annotations_clean
Parsing for ['vodafone']
[====================>]100%  Image9.xml
Statistics:
vodafone: 28
Dataset size: 28
Dataset of 28 instance(s)
Image12.jpg
Traceback (most recent call last):
  File "flow", line 6, in <module>
    cliHandler(sys.argv)
  File "C:\Users\karanbari\Desktop\YOLO\darkflow-master\darkflow\cli.py", line 33, in cliHandler
    print('Enter training ...'); tfnet.train()
  File "C:\Users\karanbari\Desktop\YOLO\darkflow-master\darkflow\net\flow.py", line 39, in train
    for i, (x_batch, datum) in enumerate(batches):
  File "C:\Users\karanbari\Desktop\YOLO\darkflow-master\darkflow\net\yolo\data.py", line 114, in shuffle
    inp, new_feed = self._batch(train_instance)
  File "C:\Users\karanbari\Desktop\YOLO\darkflow-master\darkflow\net\yolov2\data.py", line 28, in _batch
    img = self.preprocess(path, allobj)
  File "C:\Users\karanbari\Desktop\YOLO\darkflow-master\darkflow\net\yolo\predict.py", line 62, in preprocess
    result = imcv2_affine_trans(im)
  File "C:\Users\karanbari\Desktop\YOLO\darkflow-master\darkflow\utils\im_transform.py", line 20, in imcv2_affine_trans
    h, w, c = im.shape
AttributeError: 'NoneType' object has no attribute 'shape'

This is the corresponding .xml file:

<annotation>
  <folder>images\train_clean</folder>
  <filename>Image12.jpg</filename>
  <segmented>0</segmented>
  <size>
    <width>446</width>
    <height>113</height>
    <depth>3</depth>
  </size>
  <object>
    <name>vodafone</name>
    <pose>Unspecified</pose>
    <truncated>0</truncated>
    <difficult>0</difficult>
    <bndbox>
      <xmin>0</xmin>
      <ymin>0</ymin>
      <xmax>115</xmax>
      <ymax>111</ymax>
    </bndbox>
  </object>
</annotation>