PVT model not training..
Opened this issue · 0 comments
ma7555 commented
Describe the bug
PVT model does not train.
To Reproduce
Steps to reproduce the behaviour:
import tfimm
import tensorflow_datasets as tfds
import tensorflow as tf
def resize_normalize(x, y):
x = tf.image.resize(x, (224, 224)) / 255
return x, y
train_ds = tfds.load('imagenet_v2',
split='test',
as_supervised=True)
train_ds = train_ds.map(resize_normalize).batch(32)
model = tfimm.create_model("pvt_tiny", pretrained=None)
model.compile(optimizer=tf.keras.optimizers.Adam(1e-3), loss="sparse_categorical_crossentropy", metrics=["accuracy"])
model.fit(train_ds)
Epoch 1/5
313/313 [==============================] - 67s 187ms/step - loss: 15.6424 - accuracy: 6.0000e-04
Epoch 2/5
313/313 [==============================] - 60s 191ms/step - loss: 16.2130 - accuracy: 0.0010
Epoch 3/5
313/313 [==============================] - 60s 191ms/step - loss: 16.2144 - accuracy: 0.0010
Epoch 4/5
313/313 [==============================] - 60s 191ms/step - loss: 16.2418 - accuracy: 0.0010
Epoch 5/5
313/313 [==============================] - 60s 191ms/step - loss: 16.2417 - accuracy: 0.0010
Expected behaviour
Convergance of model
Desktop (please complete the following information):
- OS: Windows 11
- Repo version: 0.2.7
- TensorFlow version with CUDA/cuDNN [e.g. TF 2.9.1 with CUDA 11.2]
Also note that setting the LR to 1e-4
as the paper does not solve the problem.