Left to right: input video, fix time and synthesize from novel viewpoints, fix viewpoint and synthesize from novel timestamps, synthesize from both novel viewpoints and timestamps. Please find more results in Demo.
- Linux
- Anaconda 3
- Python 3.8
- CUDA 11.1
- RTX 3090
git clone https://github.com/mengyou2/DecoulpingNeRF.git
cd DecoulpingNeRF
conda create -n denerf python=3.8
conda activate denerf
pip install -r requirements.txt
To train the model by running
python run_nerf.py --config ./configs/config_xxxx.txt
To train the model by running
python run_nerf.py --config ./configs/config_xxxx.txt --render_only --ft_path ./logs/xxxx/200000.tar
Our code is build upon NeRF, NeRF-pytorch, NSFF and DynamicNeRF.
@article{you2024decoupling,
title={Decoupling dynamic monocular videos for dynamic view synthesis},
author={You, Meng and Hou, Junhui},
journal={IEEE Transactions on Visualization and Computer Graphics},
year={2024},
publisher={IEEE}
}