microsoft/JARVIS

Is this right ? Did it use java ?

liyi593730139 opened this issue · 0 comments

(jarvis) [root@localhost server]# python models_server.py --config configs/config.default.yaml
Fetching 27 files: 100%|████████████████████████████████████████████████████████████████████████████████████| 27/27 [00:00<00:00, 298802.66it/s]
text_config_dict is provided which will be used to initialize CLIPTextConfig. The value text_config["id2label"] will be overriden.
text_config_dict is provided which will be used to initialize CLIPTextConfig. The value text_config["id2label"] will be overriden.
WARNING:datasets.builder:Found cached dataset cmu-arctic-xvectors (/root/.cache/huggingface/datasets/cmu-arctic-xvectors/default/0.0.1/a62fea1f9415e240301ea0042ffad2a3aadf4d1caa7f9a8d9512d631723e781f)
Some weights of DPTForDepthEstimation were not initialized from the model checkpoint at models/Intel/dpt-large and are newly initialized: ['neck.fusion_stage.layers.0.residual_layer1.convolution2.bias', 'neck.fusion_stage.layers.0.residual_layer1.convolution2.weight', 'neck.fusion_stage.layers.0.residual_layer1.convolution1.weight', 'neck.fusion_stage.layers.0.residual_layer1.convolution1.bias']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Could not find image processor class in the image processor config or the model config. Loading based on pattern matching with the model's feature extractor configuration.
Downloading: "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth" to /root/.cache/torch/hub/checkpoints/resnet50_a1_0-14fe96d1.pth
Downloading: "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth" to /root/.cache/torch/hub/checkpoints/resnet50_a1_0-14fe96d1.pth
Traceback (most recent call last):
File "models_server.py", line 343, in
pipes = load_pipes(local_deployment)
File "models_server.py", line 202, in load_pipes
"model": pipeline(task="image-segmentation", model=f"{local_fold}/facebook/detr-resnet-50-panoptic"),
File "/root/anaconda3/envs/jarvis/lib/python3.8/site-packages/transformers/pipelines/init.py", line 779, in pipeline
framework, model = infer_framework_load_model(
File "/root/anaconda3/envs/jarvis/lib/python3.8/site-packages/transformers/pipelines/base.py", line 271, in infer_framework_load_model
raise ValueError(f"Could not load model {model} with any of the following classes: {class_tuple}.")
ValueError: Could not load model models/facebook/detr-resnet-50-panoptic with any of the following classes: (<class 'transformers.models.auto.modeling_auto.AutoModelForImageSegmentation'>, <class 'transformers.models.auto.modeling_auto.AutoModelForSemanticSegmentation'>, <class 'transformers.models.detr.modeling_detr.DetrForSegmentation'>).
(jarvis) [root@localhost server]#