A general 3D Object Detection codebase in PyTorch
Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PointRCNN, PIXOR, etc, as well as state-of-the-art methods on major benchmarks like KITTI(ViP) and nuScenes(CBGS). Key features of Det3D include the following apects:
- Multi Datasets Support: KITTI, nuScenes, Lyft, waymo
- Point-based and Voxel-based model zoo
- State-of-the-art performance
- DDP & SyncBN
.
├── examples -- all supported models
├── docs
├── det3d
├── LICENSE
├── README.md
├── requirements.txt
├── setup.py
└── tools
git clone https://github.com/poodarchu/det3d.git
python setup.py build develop
# For KITTI Dataset
└── KITTI_DATASET_ROOT
├── training <-- 7481 train data
| ├── image_2 <-- for visualization
| ├── calib
| ├── label_2
| ├── velodyne
| └── velodyne_reduced <-- empty directory
└── testing <-- 7580 test data
├── image_2 <-- for visualization
├── calib
├── velodyne
└── velodyne_reduced <-- empty directory
# For nuScenes Dataset
└── NUSCENES_TRAINVAL_DATASET_ROOT
├── samples <-- key frames
├── sweeps <-- frames without annotation
├── maps <-- unused
└── v1.0-trainval <-- metadata and annotations
└── NUSCENES_TEST_DATASET_ROOT
├── samples <-- key frames
├── sweeps <-- frames without annotation
├── maps <-- unused
└── v1.0-test <-- metadata
# KITTI
python create_data.py kitti_data_prep --root_path=KITTI_DATASET_ROOT
# nuScenes
python create_data.py nuscenes_data_prep --root_path=NUSCENES_TRAINVAL_DATASET_ROOT --version="v1.0-trainval" --nsweeps=10'
# Lyft
python create_data.py lyft_data_prep --root_path=LYFT_TEST_DATASET_ROOT
Modify dataset pkl file path in src/configs/xxx.config:
DATASET:
TYPE: nuScenes
ROOT_PATH: /data/Datasets/nuScenes
INFO_PATH: /data/Datasets/nuScenes/infos_train_10sweeps_withvelo.pkl
NSWEEPS: 10
BATCH_SIZE: 5 # 5 for 2080ti, 15 for v100
Specify Tasks
HEAD:
TASKS:
- {num_class: 1, class_names: ["car"]}
- {num_class: 2, class_names: ["truck", "construction_vehicle"]}
- {num_class: 2, class_names: ["bus", "trailer"]}
- {num_class: 1, class_names: ["barrier"]}
- {num_class: 2, class_names: ["motorcycle", "bicycle"]}
- {num_class: 2, class_names: ["pedestrian", "traffic_cone"]}
For better experiments organization, I suggest the following scripts:
./tools/scripts/train.sh
KITTI(Val) | nuScenes(Val) | |
---|---|---|
VoxelNet | √ | √ |
SECOND | √ | √ |
PointPillars | √ | √ |
PIXOR | √ | √ |
PointRCNN | x | x |
CBGS | √ | √ |
ViP | x | x |
-
Models
- VoxelNet
- SECOND
- PointtPillars
- PIXOR
- SENet & GCNet (GCNet will course model output 0, deprecated.)
- Pointnet++
- EKF Tracker & IoU Tracker
- PointRCNN
-
Features
- Multi task learning
- Single-gpu & Distributed Training and Validation
- GradNorm for Multi-task Training
- Flexible anchor dimensions
- TensorboardX
- Checkpointer & breakpoint continue
- Support both KITTI and nuScenes Dataset
- SyncBN
- Self-contained visualization
- YAML configuration
- Finetune
- Multiscale Training & Validation
- Rotated RoI Align
-
Models
- FrustumPointnet
- VoteNet
-
Features
Benjin Zhu, Bingqi Ma.
- mmdetection
- second.pytorch
- maskrcnn_benchmark