a collection of implements for cs224n 2019 homework statistical-learning pytorch tutorial and bert demo
用来存放 CS224n 2019 的作业 & pytorch 入门教程 记录笔记 总结
conda install --file requirements.txt
- conda 源需要指向tuna源
- [a1] 需要查一下 trunstSVD 有点忘掉了 目前似乎是把高维度对称矩阵pca降维
- [a2] 需要看一下 neg-sample 梯度是怎么计算的(网上搜到的loss是对的梯度是错的)
- [pytorchTest] 因为assgin3开始 需要pytorch 基础,所以现在改为现看pytorch的nlp教程
# pytorch 入门教程 多 gpu分配 和多核需要再看看
python pytorchTest/vision.py
# 基本的 rnn 用了 i2o i2h(这是模仿lstm?) 和一个隐藏层 2 隐藏层
python textProccess/rnn/main.py
# char-generate 的 rnn 用了 i2o i2h 020 隐藏层 2 隐藏层 output 2 隐藏层 2 input
python textProccess/generate/main.py
# torchtext 判别器, 查看并更改了源码解决了torchtext 每次都要下载数据的问题
python torchText/classify/main.py
# TODO 完全用来学习的 transformer language model
python torchText/transformer/main.py
# EM算法
/statistical-learning/em.py
# 隐马模型的前向 后向 维特比
/statistical-learning/hmm.py
# crf 没怎么理解后续看懂了再放出来
# shift left-arc right-arc
python assign03/parser_transitions.py part_d
"""
输入数据 样例:
train_set
{
'word':
['in', 'an', 'oct.', '19', 'review', 'of', '``', 'the', 'misanthrope', "''", 'at', 'chicago', "'s", 'goodman', 'theatre', '-lrb-', '``', 'revitalized', 'classics', 'take', 'the', 'stage', 'in', 'windy', 'city', ',', "''", 'leisure', '&', 'arts', '-rrb-', ',', 'the', 'role', 'of', 'celimene', ',', 'played', 'by', 'kim', 'cattrall', ',', 'was', 'mistakenly', 'attributed', 'to', 'christina', 'haag', '.'],
'pos':
['IN', 'DT', 'NNP', 'CD', 'NN', 'IN', '``', 'DT', 'NN', "''", 'IN', 'NNP', 'POS', 'NNP', 'NNP', '-LRB-', '``', 'VBN', 'NNS', 'VB', 'DT', 'NN', 'IN', 'NNP', 'NNP', ',', "''", 'NN', 'CC', 'NNS', '-RRB-', ',', 'DT', 'NN', 'IN', 'NNP', ',', 'VBN', 'IN', 'NNP', 'NNP', ',', 'VBD', 'RB', 'VBN', 'TO', 'NNP', 'NNP', '.'],
'head':
[5, 5, 5, 5, 45, 9, 9, 9, 5, 9, 15, 15, 12, 15, 9, 20, 20, 19, 20, 5, 22, 20, 25, 25, 20, 20, 20, 20, 28, 28, 20, 45, 34, 45, 36, 34, 34, 34, 41, 41, 38, 34, 45, 45, 0, 48, 48, 45, 45],
'label':
['case', 'det', 'compound', 'nummod', 'nmod', 'case', 'punct', 'det', 'nmod', 'punct', 'case', 'nmod:poss', 'case', 'compound', 'nmod', 'punct', 'punct', 'amod', 'nsubj', 'dep', 'det', 'dobj', 'case', 'compound', 'nmod', 'punct', 'punct', 'dep', 'cc', 'conj', 'punct', 'punct', 'det', 'nsubjpass', 'case', 'nmod', 'punct', 'acl', 'case', 'compound', 'nmod', 'punct', 'auxpass', 'advmod', 'root', 'case', 'compound', 'nmod', 'punct']
}
wordembedding 样例:
accelerators
0.181292 -0.667547 -1.56269 1.07374 -0.578965 -1.48894 -3.40869 -0.995061 0.00719613 1.59514 0.666047 -1.23074 -1.07743 -0.151945 -0.788508 0.871682 1.44595 0.0136208 -1.34467 1.1571 0.130709 0.0227585 0.282243 0.229792 -0.0815991 -0.0376202 0.428753 0.303739 -0.73318 -0.557974 0.508922 -0.458103 -0.309525 -0.841847 1.36923 -1.28841 -1.65283 -0.621058 -0.869718 1.90532 0.00530639 -1.19798 0.830816 -1.04491 0.519946 0.066836 0.613915 -0.331479 -0.473813 -0.767639
目标函数:forward 结果 logist 和 train_y 的 error
损失计算过程:下一步操作的denpendence 和实际的 偏差( TODO 重点 )
损失:交叉熵
"""
python assign03/run.py
- colab 中bert fine-turn 的 classifier
- bert s2s classifier 文章相关性判定
- mnt transformer 英翻中
- 注意力机制
- encoder decoder layer
- mask 机制的实现
- 位置编码
- gym 环境测试: /gym/test01.py 注意 这里 zsh pip homebrew 都改了源和代理指向国内源 和网络连接走代理 需要安装 ffmpeg 其他问题可见troubelShooting
- 本地安装需要 tersorflow 1.11 py3.6
- 为了训练方便,改为colab notebook
- [敏感度]/nn-visualize/grad_cam 通过梯度提升实现
- [敏感度]/nn-visualize/integrated_gradients 通过梯度插补实现
- [卷积]/nn-visualize/visualizing_what_convnets_learn 可视化卷积每一层学到的内容
- some solutions https://github.com/ZacBi/CS224n-2019-solutions
- cource materials https://github.com/zhanlaoban/CS224N-Stanford-Winter-2019
- some notes & solutions https://blog.csdn.net/cindy_1102/article/category/8804737
- amazing blog form Mr Lee Meng https://leemeng.tw/neural-machine-translation-with-transformer-and-tensorflow2.html
- lihang statstic-learning 2019