AttributeError: 'LlamaForCausalLM' object has no attribute 'transformer' when using deepseek
g-w1 opened this issue · 2 comments
g-w1 commented
I'm not sure exactly what is going on but I think it's because I'm using deepseek maybe?
With this code
model = LanguageModel("deepseek-ai/deepseek-llm-7b-base", device_map='cuda', tokenizer=tokenizer)
with model.trace("Hey here is some text"):
print(model.transformer)
output = model.output.save()
I get this error:
AttributeError Traceback (most recent call last)
Cell In[13], line 7
3 #tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-llm-7b-base")
4 #model = LanguageModel("redwoodresearch/math_pwd_lock_deepseek_math7b_on_weak_pythia1b", device_map='cuda', tokenizer=tokenizer)
5 model = LanguageModel("deepseek-ai/deepseek-llm-7b-base", device_map='cuda', tokenizer=tokenizer)
----> 7 with model.trace("Hey here is some text"):
8 print(model.transformer)
9 output = model.output.save()
File /.../python3.12/site-packages/nnsight/contexts/Runner.py:41, in Runner.__exit__(self, exc_type, exc_val, exc_tb)
39 """On exit, run and generate using the model whether locally or on the server."""
40 if isinstance(exc_val, BaseException):
---> 41 raise exc_val
43 if self.remote:
44 self.run_server()
Cell In[13], line 8
5 model = LanguageModel("deepseek-ai/deepseek-llm-7b-base", device_map='cuda', tokenizer=tokenizer)
7 with model.trace("Hey here is some text"):
----> 8 print(model.transformer)
9 output = model.output.save()
File /.../python3.12/site-packages/nnsight/models/NNsightModel.py:315, in NNsight.__getattr__(self, key)
309 def __getattr__(self, key: Any) -> Union[Envoy, InterventionProxy, Any]:
310 """Wrapper of ._envoy's attributes to access module's inputs and outputs.
311
312 Returns:
313 Any: Attribute.
314 """
--> 315 return getattr(self._envoy, key)
File /.../python3.12/site-packages/nnsight/envoy.py:373, in Envoy.__getattr__(self, key)
363 def __getattr__(self, key: str) -> Union[Envoy, Any]:
364 """Wrapper method for underlying module's attributes.
365
366 Args:
(...)
370 Any: Attribute.
371 """
--> 373 return getattr(self._module, key)
File /.../python3.12/site-packages/torch/nn/modules/module.py:1688, in Module.__getattr__(self, name)
1686 if name in modules:
1687 return modules[name]
-> 1688 raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'")
AttributeError: 'LlamaForCausalLM' object has no attribute 'transformer'
francescortu commented
If you print(model)
to show which modules are there you'll obtain
LlamaForCausalLM(
(model): LlamaModel(
(embed_tokens): Embedding(102400, 4096)
(layers): ModuleList(
(0-29): 30 x LlamaDecoderLayer(
(self_attn): LlamaSdpaAttention(
(q_proj): Linear(in_features=4096, out_features=4096, bias=False)
(k_proj): Linear(in_features=4096, out_features=4096, bias=False)
(v_proj): Linear(in_features=4096, out_features=4096, bias=False)
(o_proj): Linear(in_features=4096, out_features=4096, bias=False)
(rotary_emb): LlamaRotaryEmbedding()
)
(mlp): LlamaMLP(
(gate_proj): Linear(in_features=4096, out_features=11008, bias=False)
(up_proj): Linear(in_features=4096, out_features=11008, bias=False)
(down_proj): Linear(in_features=11008, out_features=4096, bias=False)
(act_fn): SiLU()
)
(input_layernorm): LlamaRMSNorm()
(post_attention_layernorm): LlamaRMSNorm()
)
)
(norm): LlamaRMSNorm()
)
(lm_head): Linear(in_features=4096, out_features=102400, bias=False)
(generator): WrapperModule()
)
So the the point is that transformer is not a valid module for this model.
g-w1 commented
Thank you! I didn't understand that the api was not homogeneous for all models. After some playing around here is what I got to work (maybe reference for future viewers of this issue):
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-llm-7b-base")
model = LanguageModel("deepseek-ai/deepseek-llm-7b-base", device_map='cuda', tokenizer=tokenizer)
with model.trace("Hey here is some text"):
output_layer_1_mlp = model.model.layers[0].output.save()
print(output_layer_1_mlp)