pbrod/numdifftools

Computing the Jacobian fails for functions of shape (1,)

jeffrey-hokanson opened this issue · 0 comments

The call to Jacobian with a function of shape (1,) fails. Although this can be computed using Gradient, this case is helpful when checking the derivates of constraints in optimization problems.

Example

import numpy as np
import numdifftools as nd
fun = lambda x: np.array([np.sum(x**2) - 1,])
J1 = nd.Jacobian(fun)(x)

This fails with message

Traceback (most recent call last):
  File "/Users/jeffreyh/SVN/ExtOpt/tests/test_numdifftools.py", line 20, in <module>
    J1 = nd.Jacobian(fun)(x)
  File "/opt/homebrew/lib/python3.10/site-packages/numdifftools/core.py", line 431, in __call__
    return super(Jacobian, self).__call__(np.atleast_1d(x), *args, **kwds)
  File "/opt/homebrew/lib/python3.10/site-packages/numdifftools/core.py", line 288, in __call__
    results, f_xi = self._derivative(x_i, args, kwds)
  File "/opt/homebrew/lib/python3.10/site-packages/numdifftools/core.py", line 428, in _derivative_nonzero_order
    return self.fd_rule.apply(results, steps2, step_ratio), fxi
  File "/opt/homebrew/lib/python3.10/site-packages/numdifftools/finite_difference.py", line 583, in apply
    f_del, h, original_shape = self._vstack(sequence, steps)
  File "/opt/homebrew/lib/python3.10/site-packages/numdifftools/finite_difference.py", line 684, in _vstack
    h = np.vstack([np.atleast_1d(r).transpose(axes).ravel() for r in steps])
  File "/opt/homebrew/lib/python3.10/site-packages/numdifftools/finite_difference.py", line 684, in <listcomp>
    h = np.vstack([np.atleast_1d(r).transpose(axes).ravel() for r in steps])
ValueError: axes don't match array

In comparison, if we have output of shape (2,), this works

import numpy as np
import numdifftools as nd
fun = lambda x: np.array([np.sum(x**2) - 1,0])
J1 = nd.Jacobian(fun)(x)