pengmiao-usc's Stars
youngyangyang04/leetcode-master
《代码随想录》LeetCode 刷题攻略:200道经典题目刷题顺序,共60w字的详细图解,视频难点剖析,50余张思维导图,支持C++,Java,Python,Go,JavaScript等多语言版本,从此算法学习不再迷茫!🔥🔥 来看看,你会发现相见恨晚!🚀
microsoft/Swin-Transformer
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows".
locuslab/TCN
Sequence modeling benchmarks and temporal convolutional networks
KikiLetGo/CyberController
CyberController
ZeweiChu/PyTorch-Course
JULYEDU PyTorch Course
MorvanZhou/NLP-Tutorials
Simple implementations of NLP models. Tutorials are written in Chinese on my website https://mofanpy.com
Eric-mingjie/network-slimming
Network Slimming (Pytorch) (ICCV 2017)
foolwood/pytorch-slimming
Learning Efficient Convolutional Networks through Network Slimming, In ICCV 2017.
joennlae/halutmatmul
Hashed Lookup Table based Matrix Multiplication (halutmatmul) - Stella Nera accelerator
JianxGao/C-machine-learning
C语言手撕机器学习/深度学习算法
CMU-SAFARI/Pythia
A customizable hardware prefetching framework using online reinforcement learning as described in the MICRO 2021 paper by Bera et al. (https://arxiv.org/pdf/2109.12021.pdf).
dna1980drys/mnistGNN
MNIST classification by using GCN
Anton-Cherepkov/gnn-mnist-classification
Image classification using Graph Neural Networks (GNNs) with MNIST dataset
stevenpelley/atomic-memory-trace
PIN-tool to produce multi-threaded atomic memory traces
jichengyuan/Vision_GNN
tedzhouhk/GCNP
kartiklakhotia/pcpm
partition-centric GAS based pagerank computation
pengmiao-usc/TransFetch
TransFetch
souravpati/GPOP
GPOP: A scalable cache- and memory-efficient framework for Graph Processing Over Partitions
ab7289-tandon-nyu/GraphVision
Evaluating the feasibility of GNN algorithms with Image Classification.
mao1207/neural-network-computation-acceleration
Reproduce the fast matrix multiplication method based on Multiplying Matrices Without Multiplying and Bolt: Accelerated Data Mining with Fast Vector Compression , while doing the speedup of the underlying operator.
MemMAP/C-MemMAP
C-MemMAP: Clustering-driven Compact, Adaptable, and Generalizable Meta-LSTM Models for Memory Access Prediction
pgroupATusc/C-MemMAP
C-MemMAP: Clustering-driven Compact, Adaptable, and Generalizable Meta-LSTM Models for Memory Access Prediction
tedzhouhk/SeDyT
neeleshg23/TabConv
Low-Computation CNN Inference via Table Lookups
pgroupATusc/ReSemble
ReSemble: Reinforced Ensemble Framework for Data Prefetching
compor/prodigy_compiler_support_public
flyniu666/PowerGraph-build
neeleshg23/PaCKD
PaCKD: Pattern-Clustered Knowledge Distillation for Compressing Memory Access Prediction Models
pgroupATusc/GPOP
GPOP: A scalable cache- and memory-efficient framework for Graph Processing Over Partitions