* Error message: filters in [convolutional] layer (689520) does not match classes or mask in [yolo] layer (64896)
redemptusabi opened this issue · 0 comments
For the custom dataset i use its 3 classes and here's the config :
[net]
Testing
#batch=1
#subdivisions=1
Training
batch=64
subdivisions=16
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.00261
burn_in=1000
max_batches = 6000
policy=steps
steps=4800,5400
scales=.1,.1
0
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=swish
1
[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish
3
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=swish
[route]
layers=-2
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish
[route]
layers = -1,-3,-5,-7
12
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[route]
layers=-3
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=swish
18
[route]
layers = -1,-4
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[route]
layers=-2
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[route]
layers = -1,-3,-5,-7
27
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[route]
layers=-3
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=swish
33
[route]
layers = -1,-4
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[route]
layers=-2
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[route]
layers = -1,-3,-5,-7
42
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=swish
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
[route]
layers=-3
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=swish
48
[route]
layers = -1,-4
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[route]
layers=-2
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[route]
layers = -1,-3,-5,-7
57
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=swish
##################################
SPPCSP
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
[route]
layers = -2
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=swish
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
SPP
[maxpool]
stride=1
size=5
[route]
layers=-2
[maxpool]
stride=1
size=9
[route]
layers=-4
[maxpool]
stride=1
size=13
[route]
layers=-6,-5,-3,-1
End SPP
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=swish
[route]
layers = -1, -13
72
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
End SPPCSP
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[upsample]
stride=2
[route]
layers = 42
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[route]
layers = -1,-3
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[route]
layers=-2
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[route]
layers = -1,-2,-3,-4,-5,-7
86
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[upsample]
stride=2
[route]
layers = 27
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[route]
layers = -1,-3
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[route]
layers=-2
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish
[route]
layers = -1,-2,-3,-4,-5,-7
100
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[route]
layers=-3
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=swish
[route]
layers = -1,-4,86
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[route]
layers=-2
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[route]
layers = -1,-2,-3,-4,-5,-7
115
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[route]
layers=-3
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=swish
[route]
layers = -1,-4,72
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
[route]
layers=-2
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[route]
layers = -1,-2,-3,-4,-5,-7
130
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
#############################
============ End of Neck ============
============ Head ============
P3
[route]
layers = 100
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=24
activation=swish
[convolutional]
size=1
stride=1
pad=1
filters=255
activation=logistic
[yolo]
mask = 0,1,2
anchors = 12,16, 19,36, 40,28,
classes=3
num=3
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1
resize=1.5
iou_thresh=0.2
iou_normalizer=0.05
cls_normalizer=0.5
obj_normalizer=1.0
iou_loss=ciou
nms_kind=diounms
beta_nms=0.6
new_coords=1
max_delta=2
P4
[route]
layers = 115
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=24
activation=swish
[convolutional]
size=1
stride=1
pad=1
filters=255
activation=logistic
[yolo]
mask = 0,1,2
anchors = 12,16, 19,36, 40,28,
classes=3
num=3
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1
resize=1.5
iou_thresh=0.2
iou_normalizer=0.05
cls_normalizer=0.5
obj_normalizer=1.0
iou_loss=ciou
nms_kind=diounms
beta_nms=0.6
new_coords=1
max_delta=2
P5
[route]
layers = 130
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=24
activation=swish
[convolutional]
size=1
stride=1
pad=1
filters=255
activation=logistic
[yolo]
mask = 0,1,2
anchors = 12,16, 19,36, 40,28,
classes=3
num=3
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1
resize=1.5
iou_thresh=0.2
iou_normalizer=0.05
cls_normalizer=0.5
obj_normalizer=1.0
iou_loss=ciou
nms_kind=diounms
beta_nms=0.6
new_coords=1
max_delta=2
Im having an error that says : filters in [convolutional] layer (689520) does not match classes or mask in [yolo] layer (64896)